Сетевая топология. Топология сетей

Существуют пять основных топологий (рис. 4.1):

    общая шина (Bus);

    кольцо (Ring);

    звезда (Star);

    древовидная (Tree);

    ячеистая (Mesh).

Рис. 4.14 Типы топологий

Общая шина

Общая шина это тип сетевой топологии, в которой рабочие станции расположены вдоль одного участка кабеля, называемого сегментом.

Рис. 4.15 ТопологияОбщая шина

Топология Общая шина (рис. 4.2) предполагает использование одного кабеля, к которому подключаются все компьютеры сети. В случае топологииОбщая шина кабель используется всеми станциями по очереди. Принимаются специальные меры для того, чтобы при работе с общим кабелем компьютеры не мешали друг другу передавать и принимать данные. Все сообщения, посылаемые отдельными компьютерами, принимаются и прослушиваются всеми остальными компьютерами, подключенными к сети.Рабочая станция отбирает адресованные ей сообщения, пользуясьадресной информацией. Надежность здесь выше, так как выход из строя отдельных компьютеров не нарушит работоспособность сети в целом. Поиск неисправности в сети затруднен. Кроме того, так как используется только один кабель, в случае обрыва нарушается работа всей сети. Шинная топология - это наиболее простая и наиболее распространенная топология сети.

Примерами использования топологии общая шина является сеть 10Base–5 (соединение ПК толстым коаксиальным кабелем) и 10Base–2 (соединение ПК тонким коаксиальным кабелем).

Рис. 4.16 ТопологияКольцо

Кольцо – это топология ЛВС, в которой каждая станция соединена с двумя другими станциями, образуя кольцо (рис.4.3). Данные передаются от одной рабочей станции к другой в одном направлении (по кольцу). Каждый ПК работает как повторитель, ретранслируя сообщения к следующему ПК, т.е. данные, передаются от одного компьютера к другому как бы по эстафете. Если компьютер получает данные, предназначенные для другого компьютера, он передает их дальше по кольцу, в ином случае они дальше не передаются. Очень просто делается запрос на все станции одновременно. Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них, вся сеть парализуется. Подключение новой рабочей станции требует краткосрочного выключения сети, т.к. во время установки кольцо должно быть разомкнуто. Топология Кольцо имеет хорошо предсказуемое время отклика, определяемое числом рабочих станций.

Чистая кольцевая топология используется редко. Вместо этого кольцевая топология играет транспортную роль в схеме метода доступа. Кольцо описывает логический маршрут, а пакет передается от одной станции к другой, совершая в итоге полный круг. В сетях TokenRingкабельная ветвь из центрального концентратора называется MAU (MultipleAccessUnit). MAU имеет внутреннее кольцо, соединяющее все подключенные к нему станции, и используется как альтернативный путь, когда оборван или отсоединен кабель одной рабочей станции. Когда кабель рабочей станции подсоединен к MAU, он просто образует расширение кольца: сигналы поступают к рабочей станции, а затем возвращаются обратно во внутреннее кольцо

Звезда – это топология ЛВС (рис.4.4), в которой все рабочие станции присоединены к центральному узлу (например, к концентратору), который устанавливает, поддерживает и разрывает связи между рабочими станциями. Преимуществом такой топологии является возможность простого исключения неисправногоузла . Однако, если неисправен центральный узел, вся сеть выходит из строя.

В этом случае каждый компьютер через специальный сетевой адаптер подключается отдельным кабелем к объединяющему устройству. При необходимости можно объединять вместе несколько сетей с топологией Звезда, при этом получаются разветвленные конфигурации сети. В каждой точке ветвления необходимо использовать специальные соединители (распределители, повторители или устройства доступа).

Рис. 4.17 ТопологияЗвезда

Примером звездообразной топологии является топология Ethernetс кабелем типаВитая пара 10BASE-T, центромЗвезды обычно являетсяHub.

Звездообразная топология обеспечивает защиту от разрыва кабеля. Если кабель рабочей станции будет поврежден, это не приведет к выходу из строя всего сегмента сети. Она позволяет также легко диагностировать проблемы подключения, так как каждая рабочая станция имеет свой собственный кабельный сегмент, подключенный к концентратору. Для диагностики достаточно найти разрыв кабеля, который ведет к неработающей станции. Остальная часть сети продолжает нормально работать.

Однако звездообразная топология имеет и недостатки. Во-первых, она требует много кабеля. Во-вторых, концентраторы довольно дороги. В-третьих, кабельные концентраторы при большом количестве кабеля трудно обслуживать. Однако в большинстве случаев в такой топологии используется недорогой кабель типа витая пара . В некоторых случаях можно даже использовать существующие телефонные кабели. Кроме того, для диагностики и тестирования выгодно собирать все кабельные концы в одном месте. По сравнению с концентраторамиArcNetконцентраторыEthernetи MAUTokenRingдостаточно дороги. Новые подобные концентраторы включают в себя средства тестирования и диагностики, что делает их еще более дорогими.

Обновлено — 2017-02-16

Типы топологии сетей локальных сетей. Кому-то этот вопрос может показаться не интересным и скучным, но для общего развития, хотя бы вкратце – не помешает. Может, даже где-то вы сможете блеснуть своими познаниями локальной сети, и на вас начнут смотреть с уважением. А может, ваша жизнь повернет так, что вам даже придется столкнуться с этим вопросом вплотную.

У меня именно так и произошло – чего я больше всего боялась, с тем мне и пришлось работать. И оказалось, что все мои страхи были только от не знания, а сейчас мне даже очень нравиться заниматься локальными сетями, и самой обжимать кабеля. Я буду писать коротко и ясно, чтобы не утомить вас подробностями, которые действительно могут вам и не пригодиться.

В чем преимущества локальных сетей вы можете почитать в этих статьях:

Схема физического соединения компьютеров называется топологией сети .

Существует три основных типа топологии сетей . Типы топологии сети — что это такое? Какой тип сети выбрать , чтобы и дешево было и надежно.

  1. Кольцевая топология сети . При этом типе топологии сети концы кабелей соединены друг с другом, т.е. образуют кольцо. Каждая рабочая станция соединена с двумя соседними. Данные передаются по кругу в одном направлении, а каждая станция играет роль повторителя, который принимает и отвечает на адресованные ему пакеты и передает другие пакеты следующей рабочей станции.

Преимуществом такой сети является её достаточно высокая надёжность. Чем больше компьютеров находится в кольце, тем дольше сеть реагирует на запросы. Но самый большой недостаток в том, что при выходе из строя хотя бы одного устройства отказывалась функционировать вся сеть. Да и стоимость такой сети высокая за счёт расходов на кабели сетевые адаптеры и другое оборудование.

2. Линейная топология сети или общая шина . При линейной топологии все элементы сети подключаются друг за другом с помощью одного кабеля.

Концы сегментов должны быть затерминированы специальными сопротивлениями, которые называются терминаторами .

При создании такой сети не используется дополнительное оборудование – только кабель. Все подключенные устройства в такой сети «слушают» и принимают только те пакеты информации, которые предназначены только для них, а остальные игнорируются.

Преимущества такой сети – простота организации и дешевизна. Но существенным недостатком является низкая устойчивость к повреждениям. Любое повреждение кабеля влечет за собой выход из строя всей сети. Причем поиск неисправности очень сложен.

3. Звездообразная топология является доминирующей в современных локальных сетях. Она наиболее функциональная и стабильная. Каждый компьютер сети подключается к особому устройству, называемому концентратором (hub) или коммутатором (switch). При создании этой топологии каждое устройство получает доступ к сети независимо друг от друга и при обрыве одного соединяющего кабеля перестает работать только один из элементов сети, что существенно упрощает поиск неисправности.

СовременнАЯ гуманитарнАЯ АКАДЕМИЯ

Направление подготовки / специальность ДОПУСК К ЗАЩИТЕ:

ИНФОРМАТИКА И ВТ Приказ СГА № _______

от «____»______200__г.

Выпускная квалификационная работа

Анализ и оценка типовых топологий вычислительных сетей

_____________________________________________________________

Руководитель: _______________________ / ______________ /

Ф. И. О. подпись

Дата представления работы «____» ______________ 200__г.

Мурманск 2008 г.

1Физические топологии сетей

1.1. Базовые топологии сетей

1.2.Прочие топологии сетей (цепочечная, полносвязная, ячеистая, комбинированная)

2 Логические топологии сетей

2.1 Логическая шина

2.2 Логическое кольцо

2.3 Логическая звезда (коммутация)

3Особенности практической применимости сетей Ethernet различных классов

3.1 Класс 10BaseY

3.2 Класс 100BaseY

3.3 Класс 1000BaseT (GigabitEthernet)

Заключение

Глоссарий

Библиографический список

Приложения


ВВЕДЕНИЕ

1) В современном обществе существует одна из потребностей- это связь между людьми, странами, континентом. Она должна быть быстрой, надежной и удобной.

Связь между компьютерами обеспечивают сети

2)В данной работе будут рассмотрены основные типовые топологии вычислительных сетей.

Актуальность данной работы обусловлена тем, что в связи с распространением персональных компьютеров и созданием на их основе автоматизированных рабочих мест (АРМ) возросло значение локальных вычислительных сетей (ЛВС), являющиеся объектом моего исследования. Предметом исследования являются основные топологии вычислительных сетей. Целью исследования является анализ и оценка основных топологий сетей, а в задачи исследования входит 1)изучение топологий сетей, 2)вывод о работе сетей с различной топологией, 3)выявление достоинств сетей и недостатков, возможность разбираться в преимуществах и недостатках топологий, влияющих на производительность сети.

Методы : 1)анализ литературы;2)интерпретация данных;3)отбор необходимого материала;4)качественное и количественное описание топологии вычислительных сетей

Правильно организованная и умело эксплуатируемая сеть обеспечивает целый ряд преимуществ по сравнению с отдельным компьютером:

1. Распределение данных (Data Sharing). Данные в сети хранятся на центральном РС и могут быть доступны для любого РС, подключенного к сети, поэтому не надо на каждом рабочем месте хранить одну и ту же информацию.

2. Распределение ресурсов (Resource Sharing). Периферийные устройства могут быть доступны для всех пользователей сети, например: принтер, факс-модем, сканер, диски, выход в глобальную сеть.

4. Распределение программ (Software Sharing). Все пользователи сети могут иметь доступ к программам, которые были один раз централизованно установлены.

5. Электронная почта (Electronic Mail). Все пользователи сети могут передавать и принимать сообщения.

6. Обеспечение широкого диапазона решаемых задач, предъявляющих повышенные требования к производительности и объему памяти .

Локальные сети имеют некоторые особенности. Главная из них - это связь. Она должна быть быстрой, надежной и удобной. Обычно, локальные сети не выходят за пределы нескольких комнат или одного здания, поэтому длина линии связи обычно не превышает нескольких сотен метров. Они связывают между собой ограниченное количество компьютеров. Все это позволяет обеспечить качественную связь. Поэтому скорость передачи данных обычно составляет от 10 Мбит/с и выше. К тому же, требуется надежная связь, иначе при исправлении ошибок теряется выигрыш в скорости. Также необходимо небольшое время ожидания установления связи, так как оно включено в общее время передачи информации. При таких высоких требованиях в локальных сетях используются специальные технические средства.

При построении сетей ЭВМ, в т.ч. локальных, говорят об их топологии.

Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи. Понятие топологии относится прежде всего к локальным сетям, в которых структуру связей можно легко проследить. В глобальных сетях структура связей обычно скрыта от пользователей и не слишком важна, так как каждый сеанс связи может производиться по своему собственному пути.
Топология определяет требования к оборудованию, тип используемого кабеля, возможные и наиболее удобные методы управления обменом, надежность работы, возможности расширения сети.

Сетевая топология может быть:

· физической - описывает реальное расположение и связи между узлами сети.

· логической - описывает хождение сигнала в рамках физической топологии.

1 ФИЗИЧЕСКИЕ ТОПОЛОГИИ СЕТЕЙ

Физическая топология описывает реально использующиеся способы организации физических соединений различного сетевого оборудования (использующиеся кабели, разъемы и способы подключения сетевого оборудования). Физические топологии различаются по стоимости и функциональности.

Для сетей с селекцией данных характерны широковещательные топологии. Их основные разновидности – шина, дерево, звезда с пассивным центром.

Для сетей с маршрутизацией данных характерны последовательные («точка-точка») топологии: звезда с интеллектуальным центром, кольцо, цепочка, полносвязная, произвольная .

Базовые топологии сетей: шина, звезда и кольцо подробнее будут рассмотрены ниже.

1.1 Базовые топологии сетей

Для организации сети минимально необходимо одна линия передачи данных и по одному сетевому интерфейсу для каждого участника сети. Такая топология называется шинной (другое название - моноканал). К единственной незамкнутой линии передачи данных в произвольных точках подключаются все участники

Шина позволяет легко добавлять новых участников к сети, для прокладки линии требуется минимальное количество кабеля. Основной недостаток – любой разрыв линии делает сеть неработоспособной. К тому же такой отказ довольно трудно локализовать, поскольку все абоненты включены параллельно, и понять, какой из них вышел из строя, невозможно.

В топологии шина отсутствует явно выраженный центральный абонент, через который передается вся информация, это увеличивает ее надежность (ведь при отказе центра перестает функционировать вся управляемая им система).

Поскольку центральный абонент отсутствует, разрешение возможных конфликтов в данном случае ложится на сетевое оборудование каждого отдельного абонента. В связи с этим сетевая аппаратура при топологии шина сложнее, чем при других топологиях. Тем не менее из-за широкого распространения сетей с топологией шина (прежде всего наиболее популярной сети Ethernet) стоимость сетевого оборудования не слишком высока.

Важное преимущество шины состоит в том, что при отказе любого из компьютеров сети, исправные машины смогут нормально продолжать обмен.

В случае разрыва или повреждения кабеля нарушается согласование линии связи, и прекращается обмен даже между теми компьютерами, которые остались соединенными между собой. Подробнее о согласовании будет изложено в специальном разделе книги. Короткое замыкание в любой точке кабеля шины выводит из строя всю сеть.

Отказ сетевого оборудования любого абонента в шине может вывести из строя всю сеть. К тому же такой отказ довольно трудно локализовать, поскольку все абоненты включены параллельно, и понять, какой из них вышел из строя, невозможно.

При прохождении по линии связи сети с топологией шина информационные сигналы ослабляются и никак не восстанавливаются, что накладывает жесткие ограничения на суммарную длину линий связи. Причем каждый абонент может получать из сети сигналы разного уровня в зависимости от расстояния до передающего абонента. Это предъявляет дополнительные требования к приемным узлам сетевого оборудования.

Если принять, что сигнал в кабеле сети ослабляется до предельно допустимого уровня на длине L пр, то полная длина шины не может превышать величины L пр . В этом смысле шина обеспечивает наименьшую длину по сравнению с другими базовыми топологиями.

Для увеличения длины сети с топологией шина часто используют несколько сегментов (частей сети, каждый из которых представляет собой шину), соединенных между собой с помощью специальных усилителей и восстановителей сигналов - репитеров или повторителей. Однако такое наращивание длины сети не может продолжаться бесконечно. Ограничения на длину связаны с конечной скоростью распространения сигналов по линиям связи.

Если несколько шин – сегментов соединить с помощью концентраторов или повторителей, то разрыв в одном сегменте делает неработоспособным только этот сегмент, а все остальные сегменты продолжают функционировать. Такая топология носит название «Дерево»

В звездообразной топологии принято различать два типа топологий:

1. звезда с пассивным центром;

2. звезда с интеллектуальным центром.

Звездообразная топология требует наличия специального многопортового устройства – концентратора.

Концентратор соединяется с каждым участником сети отдельной линей передачи данных. При выходе из строя одной из линий доступ к сети теряет только один участник. Однако, если откажет концентратор, работа сети станет полностью невозможной.

Среди концентраторов выделяются активные (active) и пассивные (passive). Активные концентраторы регенерируют и передают сигналы так же, как это делают репитеры. Иногда их называют многопортовыми репитерами - они имеют от 8 до 12 портов для подключения компьютеров.

Некоторые типы концентраторов являются пассивные, например монтажные панели или коммутирующие блоки. Они просто пропускают через себя сигнал как узлы коммутации, не усиливая и не восстанавливая его . Пассивные концентраторы не надо подключать к источнику питания.

Гибридными (hybrid) называются концентраторы, к которым можно подключать кабели различных типов. Сети, построенные на концентраторах, легко расширить, если подключить дополнительные концентраторы (см. Приложение 1).

Активное оборудование обладает информацией о структуре сети и может выбирать путь передачи данных, передавая данные только одному участнику, для которого они предназначены и не загружая остальные линии.

Большое достоинство звезды (как активной, так и пассивной) состоит в том, что все точки подключения собраны в одном месте. Это позволяет легко контролировать работу сети, локализовать неисправности путем простого отключения от центра тех или иных абонентов (что невозможно, например, в случае шинной топологии), а также ограничивать доступ посторонних лиц к жизненно важным для сети точкам подключения. К периферийному абоненту в случае звезды может подходить как один кабель (по которому идет передача в обоих направлениях), так и два (каждый кабель передает в одном из двух встречных направлений), причем последнее встречается гораздо чаще.

Общим недостатком для всех топологий типа звезда (как активной, так и пассивной) является значительно больший, чем при других топологиях, расход кабеля. Например, если компьютеры расположены в одну линию, то при выборе топологии звезда понадобится в несколько раз больше кабеля, чем при топологии шина. Это существенно влияет на стоимость сети в целом и заметно усложняет прокладку кабеля.

При кольцеобразной топологии каждый участник соединен отдельной линией передачи данных с двумя соседями. Данные по каждой линии передаются обычно только в одном направлении. Блоки данных ретранслируются каждым участником до тех пор, пока не попадут к получателю. Как правило, после этого блок продолжают передавать по кольцу дальше. Отправитель, получив свой блок, прошедший полный круг, изымает его из кольца и удаляет. Основной недостаток кольцевой топологии – при обрыве хотя бы одной линии, или выходе из строя хотя бы одного участника, сеть перестает функционировать.

Если предельная длина кабеля, ограниченная затуханием, составляет L пр, то суммарная длина кольца может достигать NL пр, где N - количество компьютеров в кольце. Полный размер сети в пределе будет NL пр /2, так как кольцо придется сложить вдвое . На практике размеры кольцевых сетей достигают десятков километров (например, в сети FDDI). Кольцо в этом отношении существенно превосходит любые другие топологии.

Четко выделенного центра при кольцевой топологии нет, все компьютеры могут быть одинаковыми и равноправными. Однако довольно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует его. Понятно, что наличие такого единственного управляющего абонента снижает надежность сети, так как выход его из строя сразу же парализует весь обмен.

Строго говоря, компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Ведь один из них обязательно получает информацию от компьютера, ведущего передачу в данный момент, раньше, а другие - позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на кольцо. В таких методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру. Подключение новых абонентов в кольцо выполняется достаточно просто, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае шины, максимальное количество абонентов в кольце может быть довольно велико (до тысячи и больше). Кольцевая топология обычно обладает высокой устойчивостью к перегрузкам, обеспечивает уверенную работу с большими потоками передаваемой по сети информации, так как в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды), который может быть перегружен большими потоками информации.

Из трех рассмотренных топологий кольцо наиболее уязвимо к повреждениям кабеля, поэтому в случае топологии кольца обычно предусматривают прокладку двух (или более) параллельных линий связи, одна из которых находится в резерве.

Иногда сеть с топологией кольцо выполняется на основе двух параллельных кольцевых линий связи, передающих информацию в противоположных направлениях. Цель подобного решения - увеличение (в идеале - вдвое) скорости передачи информации по сети. К тому же при повреждении одного из кабелей сеть может работать с другим кабелем (правда, предельная скорость уменьшится).

Большинство сетей ориентированы на три базовые топологии: шина, звезда, кольцо. Но, сравнивая основные характеристики этих топологий, можно отдать предпочтение топологии типа «звезда» (см. Таблицу 1.1, Таблицу 1.2).

Таблица 1.1

Характеристики топологий вычислительных сетей

Характери­стики Топология
Звезда Кольцо Шина
Стоимость расширения Незначительная Средняя Средняя
Присоединение абонентов Пассивное Активное Пассивное
Защита от от­казов Незначительная Незначительная Высокая
Размеры сис­темы Любые Любые Ограниченны
Защищенность от прослуши­вания Хорошая Хорошая Незначительная
Стоимость подключения Незначительная Незначительная Высокая
Поведение системы при высоких на­грузках Хорошее Удовлетворитель­ное Плохое
Возможность работы в ре­альном режиме времени Очень хорошая Хорошая Плохая
Разводка ка­беля Хорошая Удовлетворитель­ная Хорошая
Обслуживание Очень хорошее Среднее Среднее

Таблица 1.2

Преимущества и недостатки основных топологий компьютерных сетей

Топология Преимущества Недостатки
Шина

Небольшое время установки сети;

Дешевизна (требуется меньше кабеля и сетевых устройств);

Простота настройки;

Выход из строя рабочей станции не отражается на работе сети;

Любые неполадки в сети, как обрыв кабеля, выход из строя терминатора полностью уничтожают работу всей сети;

Сложная локализация неисправностей;

С добавлением новых рабочих станций падает производительность сети

Кольцо

Простота установки;

Практически полное отсутствие дополнительного оборудования;

Возможность работы на высоких скоростях, поскольку данные передаются только в одном направлении.

Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети;

Сложность конфигурирования и настройки;

Сложность поиска неисправностей;

Звезда

Выход из строя одной рабочей станции не отражается на работе всей сети в целом;

Хорошая масштабируемость сети;

Лёгкий поиск неисправностей и обрывов в сети;

Высокая производительность сети

Гибкие возможности администрирования

Выход из строя центрального концентратора обернётся неработоспособностью сети в целом;

Для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;

Конечное число рабочих станций, т.е. число рабочих станций ограничено количеством портов в центральном концентраторе;

Выбор топологии сети - занятие очень специфическое. Окончательное решение принимается после детального рассмотрения требований к производительности, надежности и условиям работы сети. Шинная топология представляет собой быстрейший и про­стейший способ установки маленькой или временной сети. К недостаткам такой топологии следует отнести уязвимость при неполадках в магистральном кабеле и трудность изоляции от­дельных станций или других компонентов при неправильной ра­боте. Но, ориентируясь на вышеизложенный материал, можно отдать предпочтение топологии типа «звезда», которая на сегодняшний день является наиболее распространенной и популярной, так как она оптимально сочетает в себе самые такие качества как производительность, невысокая цена (на «витой паре»), надежность, простота установки.

Преимущества топологии «звезда» по сравнению с «общей шиной» заключаются в более высокой надежности и отказоустойчивости локальной сети, в ней значительно реже возникают «заторы», да и конечное оборудование работает по «витой паре» на порядок быстрее. При этом в случае выхода из строя одного из узлов сети вся остальная система продолжает работать стабильно: полный отказ такой локальной сети происходит только при поломке концентратора. Безусловно, организация сетевой системы на основе топологии «звезда» требует значительно больших финансовых затрат, но они целиком и полностью оправдываются, когда речь заходит о необходимости обеспечить надежную связь между работающими в сети компьютерами.

2 ЛОГИЧЕСКИЕ ТОПОЛОГИИ СЕТЕЙ

Логическая топология определяет реальные пути движения сигналов при передаче данных по используемой физической топологии. Таким образом, логическая топология описывает пути передачи потоков данных между сетевыми устройствами. Она определяет правила передачи данных в существующей среде передачи с гарантированием отсутствия помех влияющих на корректность передачи данных.

Поскольку логическая топология описывает путь и направление передачи данных, то она тесно связана с уровнем MAC (Media Access Control) модели OSI (подуровень канального уровня). Для каждой из существующих логических топологий существуют методы контроля доступа к среде передачи данных (MAC) позволяющие осуществлять мониторинг и контроль процесса передачи данных . Эти методы будут обсуждаться вместе с соответствующей им топологией.

Логическая топология – это схема соединения, связанная с методом доступа к передающей среде.

В настоящее время существует три базовые логические топологии: «логическая шина», «логическое кольцо» и «логическая звезда» (коммутация). Каждая из этих топологий обеспечивает преимущества в зависимости от способов использования. Используя рассмотренные ранее рисунки, посвященные физическим топологиям, всегда нужно помнить, что логическая топология определяет направление и способ передачи, а не схему соединения физических проводников и устройств.

В таблице 2.2 представлены сводные данные по основным видам локальных сетей (см. Приложение 3).


В топологии «логическая шина» последовательности данных, называемые «кадрами» (frames), в виде сигналов распространяются одновременно во всех направлениях по существующей среде передачи. Каждая станция в сети проверяет каждый кадр данных для определения того, кому адресованы эти данные. Когда сигнал достигает конца среды передачи, он автоматически гасится (удаляется из среды передачи) соответствующими устройствами, называемыми «терминаторами» (terminators). Такое уничтожение сигнала на концах среды передачи данных предотвращает отражение сигнала и его обратное поступление в среду передачи. Если бы терминаторов не существовало, то отраженный сигнал накладывался бы на полезный и искажал его.

В топологии «логическая шина» среда передачи совместно и одновременно используется всеми устройствами передачи данных. Для предотвращения помех при попытках одновременной передачи данных несколькими станциями, только одна станция в любой момент времени имеет право передавать данные. Таким образом, должен существовать метод определения того, какая станция имеет право передавать данные в каждый конкретный момент времени.

Наиболее часто используемым при организации топологии логической шины методом контроля доступа к среде передачи является CSMA/CD – «метод прослушивания несущей, с организацией множественного доступа и обнаружением коллизий» (Carrier Sense Multiple Access/ Collision Detection). Этот метод доступа очень похож на разговор нескольких людей в одной комнате. Для того, чтобы не мешать друг другу, в любой момент времени говорит только один человек, а все остальные слушают. А начинать говорить кто-либо может только, убедившись в том, что в комнате воцарилось молчание. Точно таким же образом работает и сеть. Когда какая-либо станция собирается передавать данные, сначала она «прослушивает» (carrier sense) среду передачи данных в целях обнаружения какой-либо уже передающей данные станции. Если какая-либо станция в данный момент выполняет передачу, то станция ждет окончания процесса передачи. Когда среда передачи освобождается, ожидавшая станция начинает передачу своих данных. Если в этот момент начинается передача еще одной или несколькими станциями тоже ожидавшими освобождения среды передачи, то возникает "коллизия" (collision). Все передающие станции обнаруживают коллизию и посылают специальный сигнал информирующий все станции сети о возникновении коллизии. После этого все станции замолкают на случайный промежуток времени перед повторной попыткой передачи данных. После этого алгоритм работы начинается сначала.

Сеть, базирующаяся на топологии логической шины, может также использовать и технологию «передачи маркера» (token passing) для контроля доступа к среде передачи данных. При использовании этого метода контроля каждой станции назначается порядковый номер, указывающий очередность в передаче данных. После передачи данных станцией с максимальным номером, очередь возвращается к первой станции. Порядковые номера, назначаемые станциям, могут не соответствовать реальной последовательности физического подключения станций к среде передачи данных. Для контроля того, какая станция в текущий момент времени имеет право передать данные, используется контрольный кадр данных, называемый «маркером доступа». Этот маркер передается от станции к станции в последовательности, соответствующей их порядковым номерам. Станция, получившая маркер, имеет право передать свои данные. Однако, каждая передающая станция ограничена временем, в течение которого ей разрешается передавать данные. По окончании этого времени станция обязана передать маркер следующей станции.

Работа такой сети начинается с того, что первая станция, имеющая маркер доступа, передает свои данные и получает на них ответы в течение ограниченного промежутка времени (time slot). Если станция завершает обмен данными ранее окончания выделенного ей времени, она просто передает маркер станции со следующим порядковым номером. Далее процесс повторяется. Такой последовательный процесс передачи маркера продолжается непрерывно, предоставляя возможность каждой станции через строго определенный промежуток времени получить возможность передать данные.

Топология «логической шины» базируется на использовании физических топологий «шина» и «звезда». Метод контроля доступа и типы физических топологий выбираются в зависимости от требований к проектируемой сети. Например, каждая из сетей: Ethernet, 10Base-T Ethernet и ARCnet® используют топологию «логическая шина». Кабели в сетях Ethernet (тонкий коаксиальный кабель) подключаются с использованием физической топологии «шина», а сети 10Base-T Ethernet и ARCnet базируются на топологии «звезда». Вместе с тем, сети Ethernet (шина) и 10Base-T Ethernet (звезда) используют CSMA/CD в качестве метода контроля доступа к среде передачи данных, а в ARCnet (звезда) применяется маркер доступа.

2.2 Логическое кольцо

В топологии «логическое кольцо» кадры данных передаются по физическому кольцу до тех пор, пока не пройдут через всю среду передачи данных. Топология «логическое кольцо» базируется на физической топологии «кольцо». Каждая станция, подключенная к физическому кольцу, получает данные от предыдущей станции и повторяет этот же сигнал для следующей станции. Таким образом, данные, повторяясь, следуют от одной станции к другой до тех пор, пока не достигнут станции, которой они были адресованы. Получающая станция, копирует данные из среды передачи и добавляет к кадру атрибут, указывающий на успешное получение данных. Далее кадр с установленным «атрибутом доставки» продолжает путешествие по кольцу до тех пор, пока не достигнет станции, изначально отправившей эти данные. Станция, проанализировав «атрибут доставки» и убедившись в успешности передачи данных, удаляет свой кадр из сети .

Метод контроля доступа к среде передачи в таких сетях всегда базируется на технологии «маркеров доступа». Однако последовательность получения права на передачу данных (путь следования маркера), не всегда может соответствовать реальной последовательности подключения станций к физическому кольцу.

Классификация кольцевых систем основывается на примене­нии разных методов множественного доступа. Наиболее известны петли с жезловым (маркерным) управлением, которое реализовано в сети Token Ring фирмы IBM и волоконно-оптической сети FDDI (Fiber Distributed Data Interface), имеющей пропускную способность 100 Мбит/с и использующей топологию двойного (избыточного) кольца. IBM"s Token-Ring является примером сети, использующей топологию «логического кольца», базирующегося на физической топологии «кольцо». Token Ring (маркерное кольцо) - архитектура сетей с кольцевой логической топологией и детерминированным методом доступа с передачей маркера. Стандарт определен документом IEEE802.5, но IBM - основной проводник этой архитектуры - использует несколько отличающуюся спецификацию.

Логическое кольцо реализуется на физической звезде, в центре которой находится MAU (Multistation Access Unit) - хаб с портами подключения каждого узла. Для присоединения кабелей используются специальные разъемы, обеспечивающие замыкание кольца при отключении узла от сети. При необходимости сеть может расширяться за счет применения дополнительных хабов, связанных в общее кольцо. Требование безразрывности кольца усложняет кабельное хозяйство Token Ring, использующее четырехпроводные экранированные и неэкранированные витые пары и специальные коммутационные средства.

Основное преимущество Token Ring - заведомо ограниченное время ожидания обслуживания узла (в отличии от Ethernet не возрастающее при усилении трафика), обусловленное детерминированным методом доступа и возможностью управления приоритетом. Это свойство позволяет использовать Token Ring в системах реального времени. Кроме того, сети Token Ring легко соединяются с сетями на больших машинах (IBM Mainframe).

Недостатками Token Ring являются высокая стоимость оборудования и сложность построения больших сетей (WAN).

Топология FDDI является протоколом с передачей маркера, подобным TokenRing. Он использует либо топологию "двойное кольцо", либо топологию «Звезда». В отличие от Token Ring, в котором сетевое кольцо является логическим, а не физическим, изначальная спецификация FDDI предназначалась для систем, действительно замкнутых кабелем в кольцо. Однако в рассматриваемом случае - это уже двойное кольцо. Двойное кольцо (double ring), также называемое магистральным кольцом (trunk ring), состоит из двух отдельных колец, - основного или первичного (primary) и дополнительного (вторичного, secondary), по которым трафик движется в противоположных направлениях, обеспечивая отказоустойчивость. Длина двойного кольца может достигать 100 км, и рабочие станций могут быть расположены на расстоянии до 2 км.

Рабочие станции, присоединенные к обоим кольцам, называются станциями с двойным подключением (DASs, dual attachment stations). В случае обрыва кабеля или неисправности узла трафик перенаправляется в дополнительное кольцо и распространяется в противоположном направлении, сохраняя возможность доступа к данным любой другой системы сети. Кольцо FDDI, работающее в описанном режиме, называется свернутым кольцом (wrapped ring).

В случае свернутого кольца, если возникнет повреждение во втором кабеле, сеть распадется на два изолированных кольца, и взаимодействия в ней будут прерваны. Вдобавок, свернутое кольцо менее эффективно, чем полнофункциональное кольцо, поскольку трафик вынужден пройти дополнительное расстояние для достижения места назначения, поэтому рассмотренный резервный режим - только временная мера до тех пор, пока неисправность не будет устранена.

Архитектура FDDI обеспечивает совместимость с Token Ring, поскольку у них одинаковые форматы кадров. Однако есть и различия. В сети FDDI компьютер:

· захватывает маркер на определенный интервал времени;

· за этот интервал передает столько кадров, сколько успеет;

· завершает передачу либо по окончании выделенного интервала времени, либо из-за отсутствия передаваемых кадров .

Поскольку компьютер, завершив передачу, сразу освобождает маркер, могут остаться несколько кадров, одновременно циркулирующих по кольцу. Этим объясняется более высокая производительность FDDI, чем Token Ring, которая позволяет циркулировать в кольце только одному кадру.

2.3 Логическая звезда (коммутация)

В топологии "логическая звезда" используется метод коммутации, обеспечивающий ограничение распространения сигнала в среде передачи в пределах некоторой ее части. Механизм такого ограничения является основополагающим в топологии "логическая звезда".

В чистом виде, коммутация предоставляет выделенную линию передачи данных каждой станции. Когда одна станция передает сигнал другой станции подключенной к тому же самому коммутатору, то коммутатор передает сигнал только по среде передачи данных, соединяющей эти две станции. При таком подходе возможна одновременная передача данных между несколькими парами машин, так как данные, передающиеся между любыми двумя станциями, остаются "невидимыми" для других пар станций.

Большинство технологий коммутации создаются на базе существующих сетевых стандартов, привнося в них новый уровень функциональности. Например, рассмотренный ранее стандарт сети 10Base-T (метод контроля CSMA/CD), позволяет применять коммутацию.

Некоторые коммутаторы разрабатываются для поддержки возможностей одновременного использования нескольких сетевых стандартов. Например, один коммутатор может иметь порты для подключения станций как по стандарту 10Base-T Ethernet, так и FDDI (Fiber Distributed Data Interface).

Коммутаторы имеют встроенную логику, позволяющую им интеллектуально управлять процессом передачи данных между машинами. Внутренней логике коммутаторов свойственно высокое быстродействие, т.к. они должны обеспечивать возможность одновременной передачи данных с максимальной скоростью между каждой парой портов. Таким образом, использование коммутаторов позволяет существенно увеличить производительность сети.

Коммутация иллюстрирует то, что логическая топология определяется не только методом контроля доступа к среде передачи, но и множеством других аспектов схем электронных соединений (коммутатор является достаточно сложным и дорогим электронным устройством). Комбинируя новые технологии коммутации с существующими логическими схемами соединения, инженеры получают возможность создания новых логических топологий.

Несколько коммутаторов могут быть соединены между собой с использованием одной или нескольких физических топологий. Коммутаторы могут быть использованы не только для соединения индивидуальных станций, но и целых групп станций. Такие группы носят название «сегментов сети». По множеству причин коммутация может значительно повысить производительность сети.

Характеристики логических топологий вычислительных сетей приведены в таб­лице 2.1.

Таблица 2.1

Характеристики логических топологий вычислительных сетей

Логическая топология Кабели Макс. длина кабеля Мин. длина кабеля Макс. число станций на один кабель Макс. число станций в логич. сети Макс. число сегмен-тов Макс. общая длина логич. сети
«Шина» Ethernet 10 Мбит/с тонкий коакси-альный 185 м 4,63 м 30 1024 5 только к 3-м могут быть подключены рабочие станции 925 м
«Звезда» Ethernet 10 Мбит/с «витая пара»,
волоконно-оптический
«витая пара» - 100 м,
волоконно-оптический - 925 м
Нет

для обоих типов кабелей

1024

для обоих типов кабелей

925 м
Ethernet 100 Мбит/с - Fast Ethernet «витая пара»,
волоконно-оптический
«витая пара» - 100 м,
волоконно-оптический - 200 м
Нет 2 для обоих типов кабелей 1024

для обоих типов кабелей

200 м
1 Гбит/с Ethernet «витая пара»,
волоконно-оптический
«витая пара» - 100 м,
волоконно-оптический - 5046 м
2 для обоих типов кабелей 1024

для обоих типов кабелей

200 м
Token Ring «витая пара» - 4 Мбит/с

На 1 кольце

рованная «витая пара» - 260,
Неэкра-нирова-нная «витая пара» - 72

1000 м
Логическая топология Кабели Макс. расстояние между узлами Макс. длина сети Скорость передачи данных Макс. число станций в кольце

«Кольцо»

Token Ring «витая пара» - волоконно-оптический - 1000 м «витая пара» - 4 Мбит/с
волоконно-оптический - 16 Мб/с
Экранированная «витая пара» - 260,
Неэкранированная «витая пара» - 72

(физ. топология - двойное кольцо)

волоконно-оптический 2 км

100 км на одно кольцо

100 Мбит/с 500, 1000 соединений

Таким образом, логическая топология сети указывает на характер связей между компьютерами, особенности распространения информации, сигналов по сети. Именно характер связей определяет степень отказоустойчивости сети, требуемую сложность сетевой аппаратуры, наиболее подходящий метод управления обменом, возможные типы сред передачи (каналов связи), допустимый размер сети (длина линий связи и количество абонентов) необходимость электрического согласования и многое другое.

3 Классы сетей Ethernet

Ethernet - архитектура сетей с разделяемой средой и широковещательной передачей (все узлы получают пакет одновременно) и методом доступа CSMA/CD. Стандарт определен документом IEEE802.3. Физическая топология:

Шина для коаксиала,

Звезда - для витой пары,

Двухточечное соединение - для оптоволокна.

В настоящее время термин Ethernet используется для описания всех локальных сетей, использующих метод коллективного доступа к среде передачи данных с опознанием несущей и обнаружением коллизий.

Классы Ethernet различаются, прежде всего, пропускной способностью линий, типом используемого кабеля, топологией и некоторыми иными характеристиками. Каждый из классов сетей Ethernet имеет собственное обозначение, отражающее его технические характеристики, такое обозначение имеет вид XBase/BroadY, где X - пропускная способность сети, обозначение Base или Broad говорит о методе передачи сигнала - основополосный (baseband) или широкополосный (broadband), и, наконец, число Y отображает максимальную длину сегмента сети в сотнях метров, либо обозначает тип используемого в такой системе кабеля, который и накладывает ограничения на максимально возможное расстояние между двумя узлами сети, исходя из собственных технических характеристик . Например, сеть класса 10Base2 имеет пропускную способность 10 Мбит/с, использует метод передачи данных baseband и допускает максимальную длину сегмента в 200 м.(рис. 3.0)


К классу 10BaseY можно отнести: Класс 10Base5 (Thick Ethernet), класс 10Base2 (Thin Ethernet), класс 10BaseT (Ethernet на «витой паре»), класс 10BaseF (Fiber Optic).

Класс 10Base5 (Thick Eternet), который также иногда называют «толстым Ethernet», - это один из наиболее старых стандартов локальных сетей. Сегодня уже очень трудно отыскать в продаже оборудование этого типа, тем более трудно найти действующую сеть, работающую с данным типом устройств.

Сети стандарта 10Base5 использовали топологию «общая шина» и создавались на основе коаксиального кабеля с волновым сопротивлением 50 Ом и пропускной способностью 10 Мбит/с. Общая шина локальной сети ограничивалась с обеих сторон терминаторами, однако помимо Т-коннекторов в подобных системах использовались специальные устройства, получившие общее название «трансиверы», которое произошло от совмещения английских понятий transmitter (передатчик) и receiver (приемник). Собственно, трансиверы являлись приемниками и передатчиками данных между работающими в сети компьютерами и самой сетью (см. Рис. 3.1). Помимо функций собственно приемника-передатчика информации, трансиверы обеспечивали надежную электроизоляцию работающих в сети компьютеров, а также выполняли функции устройства, снижающего уровень посторонних электростатических помех. Максимальная длина коаксиального кабеля, протянутого между трансивером и сетевым адаптером компьютера (трансиверного кабеля) в таких сетях может достигать 25 м, максимальная длина одного сегмента сети (отрезка сети между двумя терминаторами) - 500 м, а минимальное расстояние между точками подключения - 2,5 м. Всего в одном сегменте сети 10Base5 может работать не более 100 компьютеров, при этом количество совместно работающих сегментов сети не должно превышать пяти.

Локальные сети, относящиеся к классу 10Base2, который также иногда называют Thin Ethernet, являются прямыми «наследницами» сетей 10Base5. Как и в предыдущем случае, для соединения компьютеров используется тонкий экранированный коаксиальный кабель с волновым сопротивлением 50 Ом, оснащенный Т-коннекторами и терминаторами, однако в такой конфигурации Т-коннекторы подключаются к разъему сетевой карты напрямую, без использования каких-либо промежуточных устройств (рис. 3.1). Соответственно, такая сеть имеет стандартную конфигурацию «общая шина». Максимальная длина одного сегмента сети 10Base2 может достигать 185 м, при этом минимальное расстояние между точками подключения составляет 0,5 м. Наибольшее число компьютеров, подключаемых к одному сегменту такой сети, не должно превышать 30, максимально допустимое количество сегментов сети составляет 5. Пропускная способность данной сети, как это следует из обозначения ее класса, составляет 10 Мбит/с.

Одним из наиболее распространенных сегодня классов локальных сетей Ethernet являются сети 10BaseT. Как и стандарт 10Base2, такие сети обеспечивают передачу данных со скоростью 10 Мбит/с, однако используют в своей архитектуре топологию «звезда» и строятся с применением специального кабеля, называемого twisted pair, или «витая пара». Фактически витая пара представляет собой восьмижильный провод, в котором для обмена информации по сети используется лишь две пары проводников: одна - для приема сигнала, и одна - для передачи. В качестве центрального звена в звездообразной структуре локальной сети 10BaseT применяется специальное устройство, называемое хабом, или концентратором. Для построения распределенной вычислительной системы, состоящей из нескольких сетевых сегментов, возможно подключение нескольких хабов в виде каскада, либо присоединение через хаб к сети 10BaseT локальной сети другого класса (см. Рис. 3.2), однако следует учитывать то обстоятельство, что общее число точек подключения в такой системе не должно превышать 1024. Максимально допустимое расстояние между узлами сети 10BaseT составляет 100 м, но можно сказать, что это значение взято скорее из практики построения таких сетей, поскольку стандарт 10BaseT предусматривает иное ограничение: затухание сигнала на отрезке между приемником и источником не должно превышать порога в 11,5 децибела . Именно данный класс локальных сетей наравне с 10Base2 будет подробно рассматриваться далее.

К классу10BaseF (другое название - Fiber Optic) принято относить распределенные вычислительные сети, сегменты которых соединены посредством магистрального оптоволоконного кабеля, длина которого может достигать 2 км. Очевидно, что в силу высокой стоимости такие сети используются в основном в корпоративном секторе рынка и по карману они достаточно крупным предприятиям, располагающим необходимыми средствами для организации подобной системы.

Сеть10BaseF имеет звездообразную топологию, которая, однако, несколько отличается от архитектуры, принятой для сетей 10BaseT (см. Рис. 3.3).

Компьютеры каждого сегмента такой сети подключаются к хабу, который, в свою очередь, соединяется с внешним трансивером сети10BaseF посредством специального коммуникационного шнура, подключаемого к 15-контактному разъему AUI (Attachment Unit Interface). Задача трансивера состоит в том, чтобы, получив из своего сегмента сети электрический сигнал, трансформировать его в оптический и передать в оптоволоконный кабель. Приемником оптического сигнала является аналогичное устройство, которое превращает его в последовательность электрических импульсов, направляемых в удаленный сегмент сети.

Преимущества оптических линий связи перед традиционными неоспоримы. Прежде всего диэлектрическое волокно, используемое в оптоволоконных кабелях в качестве волноводов, обладает уникальными физическими свойствами, благодаря которым затухание сигнала в такой линии крайне мало: оно составляет величину порядка 0,2 дБ на километр при длине волны 1,55 мкм, что потенциально позволяет передавать информацию на расстояния до 100 км без использования дополнительных усилителей и ретрансляторов. Кроме того, в оптических линиях связи частота несущего сигнала достигает 1014 Гц, а это означает, что скорость передачи данных по такой магистрали может составлять 1012бит в секунду . Если принять во внимание тот факт, что несколько световых волн может одновременно распространяться в световоде в различных направлениях, то эту скорость можно значительно увеличить, организовав между конечными точками оптоволоконного кабеля двунаправленный обмен данными. Другой способ удвоить пропускную способность оптической линии связи заключается в одновременной передаче по оптоволокну нескольких волн с различной поляризацией. Фактически можно сказать, что на сегодняшний день максимально возможная скорость передачи информации по оптическим линиям пока еще не достигнута, поскольку достаточно жесткие ограничения на «быстродействие» подобных сетей накладывает конечное оборудование. Оно же «ответственно» и за относительно высокую стоимость всей системы в целом, поскольку диэлектрический кварцевый световод сам по себе значительно дешевле традиционного медного провода. В завершение можно упомянуть и тот факт, что оптическая линия в силу естественных физических законов абсолютно не подвержена воздействию электромагнитных помех, а также обладает существенно большим ресурсом долговечности, чем линия, изготовленная из стандартного металлического проводника.

В таблице 3.1 представлены физические интерфейсы стандарта EthernetIEEE 802.3i и их основные характеристики

Таблица 3.1

Физический интерфейс 10Base5 10Base2 10BaseT 10BaseFL
Порт устройства AUI BNC RJ-45
(MDI или MDI-X)
ST
Среда передачи Толстый коакс. кабель (50 Ом) Тонкий коакс. кабель (50 Ом) Витая пара UTP cat.3 и выше Оптическое волокно mm/sm*
Сигнальный код Манчестер Манчестер Манчестер Манчестер / on-off
Физическая топология Шина Шина Звезда, дерево Звезда, дерево
Логическая топология Шина Шина Шина Шина
Макс. длина сегмента (м) 500 185 100 mm - 2000, sm -***
Количество узлов на сегмент 100
смешанный сегмент
30
смешанный сегмент
-
соединение точка-точка
-
соединение точка-точка
Диаметр кабеля (mm) 10 5 0,4-0,6 62,5/125 мкм, 50/125 мкм

3.2 Классы 100BaseT, 100BaseTX, 100ВаsеТ4 и 100BaseFX

Кклассу 100BaseY можноотнести: Класс 100BaseT (Fast Ethernet), класс 100BaseTX , класс100BaseT4, класс100BaseFX.

Класс локальных сетей 100BaseT, называемый также Fast Ethernet, появился относительно недавно: он был создан в 1992 году группой разработчиков, называемой Fast Ethernet Alliance (FEA). Фактически Fast Ethernet является «наследником» сетей стандарта 10BaseT, однако в отличие от них позволяет передавать данные со скоростью до 100 Мбит/с. Так же как и сети 10BaseT, локальные сети Fast Ethernet имеют звездообразную топологию и могут быть собраны с использованием кабеля различных типов, наиболее часто применяемым из которых является витая пара. В 1995 году данный стандарт был одобрен Институтом инженеров по радиотехнике и электронике (Institute of Electrical and electronic Engineers, IEEE) и вошел в спецификацию IEEE 802.3 (это расширение спецификации получило обозначение IEEE 802.3u), обретя тем самым официальный статус.

Поскольку класс сетей 100BaseT является прямым потомком класса 10BaseT, в таких системах используются стандартные для Ethernet протоколы передачи данных, а также стандартное прикладное программное обеспечение, предназначенное для администрирования локальной сети, что значительно упрощает переход от одного типа сети к другому. Предполагается, что в не столь отдаленном будущем эта технология вытеснит большинство действующих на сегодняшний день «устаревших» стандартов, поскольку в процессе разработки данной спецификации одной из основных задач являлось сохранение совместимости новой разновидности локальных сетей с различными типами кабеля, используемого в сетях старого образца, было создано несколько модификаций стандарта Fast Ethernet. Технология 100BaseTX подразумевает использование стандартной витой пары пятой категории, в которой задействовано только четыре проводника из восьми веющихся: два - для приема данных, и два - для передачи. Таким образом, сети обеспечивается двунаправленный обмен информацией и, кроме того, остается потенциальная возможность для дальнейшего наращивания производительности всей распределенной вычислительной системы. В сетях 100BaseT4 также используется витая пара, однако в ней задействованы все восемь жил проводника: одна пара работает только на прием данных, одна - только на передачу, а оставшиеся две обеспечивают двунаправленный обмен информацией. Поскольку технология 100BaseT4 подразумевает разделение всех передаваемых по сети данных на три независимых логических канала (прием, передача, прием-передача), пропорционально уменьшается частота сигнала, что позволяет прокладывать такие сети с использованием менее качественного и, следовательно, более дешевого кабеля 3 или 4 категории, наконец, последний стандарт в семействе Fast Ethernet носит наименование 100BaseFX. Предназначен он для работы с оптоволоконными линиями связи.
Максимальная длина одного сегмента в сетях 100BaseT (кроме подкласса 100BaseFX) не превышает 100 м, в качестве конечного оборудования используются сетевые адаптеры и концентраторы, поддерживающие этот стандарт. Существуют также универсальные сетевые адаптеры 10BaseT/ 100BaseT. Принцип их работы состоит в том, что в локальных сетях этих двух классов используются одинаковые линии с одним и тем же типом разъемов, а задача автоматического распознавания пропускной способности каждой конкретной сети (10 Мбит/с или 100 Мбит/с) возлагается на протокол канального уровня, являющийся частью программного обеспечения самого адаптера. Алгоритм работы такого устройства можно проиллюстрировать на простом примере. При включении компьютера, оснащенного сетевым адаптером 10BaseT/100BaseT, последний выдает в сеть сигнал, информирующий другие сетевые устройства о том, что он способен поддерживать скорость передачи данных до 100 Мбит/с. Если оборудование локальной сети (например, хаб, к которому подключен данный компьютер) обеспечивает аналогичную скорость соединения, оно генерируют ответный сигнал, после чего адаптер продолжает работать в режиме 100BaseT. Если отклика не поступает, сетевая карта автоматически переходит в режим передачи данных со скоростью 10 Мбит/с, то есть переключается на работу в стандарте 10BaseT .

Несмотря на все преимущества спецификации 100BaseT, такие сети по сравнению с более старыми реализациями Ethernet не лишены и ряда недостатков, унаследованных ими от своего прародителя - стандарта 10BaseT. Прежде всего, в моменты пиковой нагрузки, то есть в случае возникновения ситуации, при которой к ресурсам сети одновременно обращается более 50% всех узлов, на линии образуется хорошо знакомый пользователям 10BaseT «затор» - другими словами, сеть начинает заметно «тормозить». И во-вторых, если в распределенной вычислительной системе применяется комбинированная технология (одна часть сети работает со стандартом 10BaseT, другая - со стандартом 100BaseT), высокая скорость соединения будет возможна только на участке, поддерживающем пропускную способность в 100 Мбит/с. Поэтому даже если ваш компьютер оснащен сетевым адаптером 100BaseT, при обращении к удаленному узлу, оборудованному сетевой картой 10BaseT, скорость соединения не превысит 10 Мбит/с.

3.3 Класс1000BaseT (Gigabit Ethernet)

Чем быстрее растут вычислительные мощности современных персональных компьютеров, тем больше становится среднестатистический объем обрабатываемых с их помощью файлов. Соответственно возникает потребность в пропорциональном увеличении пропускной способности линий связи. В итоге это заметно ускорило процесс эволюции сетевых технологий: не успел окончательно прижиться стандарт 100BaseT, как ему на смену подоспел новый класс локальных сетей, позволяющих передавать информацию со скоростью до гигабита в секунду. Эти сети получили обозначение 1000BaseT и альтернативное название Gigabit Ethernet.
В архитектуре сетей1000BaseT используется топология «звезда» на базе высококачественного кабеля «витая пара» категории 5, в котором задействованы все восемь жил, причем каждая из четырех пар проводников используется как для приема, так и для передачи информации . По сравнению с технологией 100BaseT, несущая частота в сетях 1000BaseT увеличена вдвое, благодаря чему достигается десятикратное увеличение пропускной способности линии связи. При переходе от стандарта 10BaseT или 100BaseT к 1000BaseT особые требования предъявляются к качеству монтажа сетевых розеток и разъемов: если сеть проложена в полном соответствии с существующими стандартами, она, скорее всего, сможет обеспечить требуемую скорость передачи данных, если же монтаж был выполнен с отклонениями от требований спецификации Ethernet, возникающие в соединениях помехи не позволят добиться расчетных характеристик. Как и в более ранних классах сетей XBaseT, длина одного сегмента Gigabit Ethernet не должна превышать 100 м.

Стандарт 1000BaseT был официально подтвержден Институтом инженеров по радиотехнике и электронике (Institute of Electrical and Electronic Engineers, IEEE) в 1999 году, и включен в спецификацию IEEE 802.3. В настоящее время оборудование для данного типа сетей выпускается несколькими независимыми производителями компьютерного «железа».

В таблице 3.2 приведены физические характеристики различных спецификаций Ethernet.

Таблица 3.2.

Стандарт Физическая
спецификация
Кабели, разъемы Ограничения на длину физ. сегмента, м Макс. число повторителей макс. число станций Диаметр сети, м

Толстый коаксиал

RG‑8/11, разъемы AUI

500
min 2,5 м
4 (2 сегмента без узлов) 100 2500
10Base2 (Cheapernet) Тонкий коаксиал RG‑58A/U, разъемы BNC 30 925
10BaseTX 2ВП UTP3-4-5, RJ-45 100 4 1024 500
10BaseF ОМ ОВ / ММ ОВ 62.5, разъемы ST 1000/5000 - 2 1000/ 5000
Fast Ethernet (IEEE 802.3u) 100BaseTX 2ВП UTP, STPType 1, разъемы RJ-45 100 1 класса I / 2 класса II (кабель между повторит. – до 5 м) 1024 200-320
100BaseFX ММ ОВ 62.5, 125 мкм, разъемы ST, SC

412 (полудуплекс)/ 2000 (полнодуплексн.)

100BaseT4 4ВП UTP3-4-5, RJ-45 100

Gigabit Ethernet

1000BaseLX ММ ОВ / ОМ ОВ, разъемы ST, SC 316 (550/3000) - 2 550/ 3000
1000BaseSX ММ ОВ 62.5/50 мкм разъемы ST, SC 275 (300/550) - 300/ 550
1000BaseCX коаксиал, (ВП STP), RJ-45 25 - 25
(802.3ab) 1000BaseT ВП STP5-6 RJ-45 100 - 100

Стандарты Ethernet определяют проводные соединения и электрические сигналы на физическом уровне, формат пакетов и протоколы управления доступом к среде - на канальном уровне модели OSI. Ethernet в основном описывается стандартами IEEE группы 802.3. Ethernet стал самой распространённой технологией ЛВС в середине 90-х годов прошлого века, вытеснив такие технологии, как Arcnet, FDDI и TokenRing. Поскольку при технологии Ethernet все компьютеры локальной сети имеют возможность одновременного доступа к передающей среде, логическая топология является «шиной». Несмотря на изменение физической топологии в Fast Ethernet, при этом не изменился метод доступа к среде, следовательно, логическая топология также не изменилась.

ЗАКЛЮЧЕНИЕ

Топология сети указывает не только на физическое расположение компьютеров, как часто считают, но, что гораздо важнее, на характер связей между ними, особенности распространения информации, сигналов по сети. Именно характер связей определяет степень отказоустойчивости сети, требуемую сложность сетевой аппаратуры, наиболее подходящий метод управления обменом, возможные типы сред передачи (каналов связи), допустимый размер сети (длина линий связи и количество абонентов) необходимость электрического согласования и многое другое. Более того, физическое расположение компьютеров, соединяемых сетью, почти не влияет на выбор топологии. Как бы ни были расположены компьютеры, их можно соединить с помощью любой заранее выбранной топологии (см. рис 4.1).

В том случае, если соединяемые компьютеры расположены по контуру круга, они могут соединяться, как звезда или шина. Когда компьютеры расположены вокруг некоего центра, их допустимо соединить с помощью топологий шина или кольцо. Наконец, когда компьютеры расположены в одну линию, они могут соединяться звездой или кольцом. Другое дело, какова будет требуемая длина кабеля.

Строго говоря, при упоминании о топологии сети, мы можем подразумевать четыре совершенно разные понятия, относящиеся к различным уровням сетевой архитектуры:

· Физическая топология (географическая схема расположения компьютеров и прокладки кабелей). В этом смысле, например, пассивная звезда ничем не отличается от активной, поэтому ее нередко называют просто звездой.

· Логическая топология (структура связей, характер распространения сигналов по сети). Это наиболее правильное определение топологии.

· Топология управления обменом (принцип и последовательность передачи права на захват сети между отдельными компьютерами).

· Информационная топология (направление потоков информации, передаваемой по сети).

Например, сеть с физической и логической топологией шина может в качестве метода управления использовать эстафетную передачу права захвата сети (быть в этом смысле кольцом) и одновременно передавать всю информацию через выделенный компьютер (быть в этом смысле звездой). Или сеть с логической топологией шина может иметь физическую топологию звезда (пассивная) или дерево (пассивное).

Сеть с любой физической топологией, логической топологией, топологией управления обменом может считаться звездой в смысле информационной топологии, если она построена на основе одного сервера и нескольких клиентов, общающихся только с этим сервером. Точно так же любая сеть может быть названа шиной в информационном смысле, если она построена из компьютеров, являющихся одновременно как серверами, так и клиентами. Такая сеть будет мало чувствительна к отказам отдельных компьютеров.

Топология локальной сети является одним из самых критичных факторов, влияющих на производительность. В случае необходимости четыре основные топологии (коммутируемую, звездообразную, кольцевую и шинную) можно комбинировать произвольным образом. Возможные комбинации не ограничены рассмотренными в этой дипломной работе. Большинство современных технологий локальных сетей не только приветствуют, но даже обязывают использовать творческий подход. Очень важно разбираться в преимуществах и недостатках топологий, влияющих на производительность сети. Кроме того, следует учитывать и такие казалось бы необъективные факторы, как расположение рабочих станций в здании, пригодность кабеля, а также даже тип и способ проводки.

В конечном счете основным критерием выбора удачной топологии являются требования пользователей к производительности. Такие факторы, как стоимость, предполагаемая модернизация и ограничения существующих технологий, играют второстепенную роль.

Итак, в данной работе были рассмотрены основные топологии вычислительных сетей. Основная цель данного исследования заключалась не только в детальном рассмотрении основных топологий вычислительных сетей, но и в их сравнительной оценке, выявлении их достоинств и недостатков. Топологии различаются требуемой длиной соединительного кабеля, удобством соединения, возможностями подключения дополнительных абонентов, отказоустойчивостью, возможностями управления обменом. Топологическая структура влияет на пропускную способность и стоимость локальной сети. Каждая топология сети налагает ряд условий. Например, она может диктовать не только тип кабеля, но и способ его прокладки. На основе проведенного исследования можно сделать выбор наиболее подходящей для определенных целей топологии вычислительной сети.

Практическая значимость проведенного исследования вполне очевидна – материалы и выводы данной работы помогут разбираться в преимуществах и недостатках топологий, влияющих на производительность сети, могут быть использованы для выбора наиболее подходящей топологии при проектировании компьютерных сетей предприятий.


ГЛОССАРИЙ

Витая пара

среда передачи информации из двух перекрученных между собой электрических проводов, характеризующаяся наибольшей простотой монтажа и низкой стоимостью.

Диаметр сети

путь максимальной длины в сети Ethernet, то есть путь между двумя абонентами с максимальной для данной сети задержкой распространения сигнала.

Затухание сигнала

ослабление передаваемого сигнала при его прохождении по сети, доля мощности сигнала, потерянная при прохождении по кабелю. Измеряется в децибелах (дБ).

Звезда (star)

вид топологии локальной сети, в котором к одному цен, тральному абоненту (концентратору) подключаются несколько периферийных абонентов; при этом все управление сетью и (или) передачу всей информации в ней осуществляет центральный абонент.

Зона конфликтов (область коллизий)

множество абонентов (узлов) сети Ethernet, осуществляющих доступ к сети по методу CSMA/CD. Часть сети, на которую распространяется ситуация конфликта. Может включать в себя всю сеть.

Коаксиальный кабель

Среда передачи информации, электрический кабель, состоящий из центрального проводника и металлической оплетки, разделенных диэлектриком.

Коллизия ситуация, при которой в сеть передаются несколько пакетов одновременно, что вызывает искажение информации. Называется также конфликтом или столкновением.
Кольцо (ring)

вид топологии локальной сети, в котором все абоненты последовательно передают информацию друг другу по цепочке, замкнутой в кольцо.

Концентратор (hub) устройство, служащее для объединения нескольких сегментов единой сети и не преобразующее передаваемую информацию.
Конфликт, коллизия (collision)

ситуация, при которой в сеть передаются несколько

Локальная сеть

компьютеры или другие устройства, соединенные линиями связи для передачи информации между ними, как правило, на сравнительно небольшие расстояния.

Маркер

уникальная комбинация битов или пакет специального вида, использующийся для процедуры захвата сети.

Маркерное кольцо детерминированный метод доступа в локальных сетях, альтернативный случайному методу доступа CSMA/CD и обеспечивающий, в отличие от него, отсутствие коллизий и гарантированное сверху время доставки данных в сетях при отсутствии перегрузок. Допускает организацию системы приоритетов между абонентами
Оптоволоконный кабель среда передачи информации, представляющая собой стеклянное или пластиковое волокно в оболочке, по которому распространяется световой сигнал.
Ошибки передачи искажения передаваемой информации в сетях вследствие внешних помех, некачественных кабелей, неисправностей сетевого оборудования, неправильного согласования электрических кабелей, отсутствия гальванической развязки, а также вследствие конфликтов (коллизий)передачи.
Пакет

единица информации, передаваемой по сети. Могут быть короткими (порядка десятков байт и даже единиц байт), а также длинными (порядка нескольких килобайт). Включают в себя данные (необязательно), адреса и управляющие коды.

Петля замкнутый контур передачи информации в топологии сети.
Перегрузка (overload) ситуация, при которой сеть не может работать при полной нагрузке большую часть времени. В сетях, использующих метод доступа CSMA/CD, перегрузка связана с ростом числа коллизий из-за конкуренции абонентов в сети.

1. Барановская Т. П., Лойко В. И., Семенов М. И., Трубилин А. И. Архитектура компьютерных систем и сетей. – М.: Финансы и статистика, 2003. – 256с.

2. Березин С. Интернет у вас дома. – 2-е изд. – СПб.: VHB, 2000. – 735с.

3. Блэк Ю. Сети ЭВМ: протоколы, стандарты, интерфейсы. – М.: Мир, 1998. – 510с.

4. Бройдо В.Л. Вычислительные системы, сети и телекоммуникации: Учебник для вузов. – СПб.: Питер, 2002. – 688с.

5. Бумфрей Ф. XML. Новые перспективы WWW. – М.: ДМК, 2000. ­– 688с.

6. Ветров C. Компьютерное «железо». – М.: СОЛОН-Р, 2002. – 559 стр.

7. Гук М. Аппаратные средства локальных сетей. Энциклопедия. – СПб.: Питер, 2000. – 576с.

8. Зима В. Безопасность глобальных сетевых технологий. – СПб.: BHV, 2001. – 320 с.

9. Ибе О. Сети и удаленный доступ. Протоколы, проблемы, решения. – М.: ДМК Пресс, 2003. – 336с.

10. Иртегов Д. В. Введение в сетевые технологии. – СПб.: BHV, 2004. – 560с.

11. Кульгин М. Практика построения компьютерных сетей. Для профессионалов. – СПб.: Питер, 2001. – 320с.

13. Максимов Н. В., Попов И. И. Компьютерные сети. – М.: Форум, 2007. – 448с.

14. Мизин И.А. и др. Сети коммутации пакетов. – М.: Радио и связь, 1986. – 405с.

15. Морозевич А.Н. Основы информатики: Учебное пособие для студентов вузов. – М.: Новое знание, 2001. – 544с.

16. Новиков Ю. В., Кондратенко С. В. Основы локальных сетей. Курс лекций. – СПб.: Интуит, 2005. – 360с.

17. Олифер В. Новые технологии и оборудование IP-сетей. ­– СПб.: BHV, 2001. – 512 с.

18. Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы. – СПб.: Питер, 2000. – 672с.

19. Олифер Н.А. Сетевые операционные системы: Учебное пособие для студентов вузов. – СПБ.: Питер, 2001. – 544с.

20. Поляк-Брагинский А. В. Сеть под Microsoft Windows. ­– СПб.: BHV, 2003. – 336с.

21. Пятибратов А.П. и др. Вычислительные системы, сети и телекоммуникации: Учебник. – М.: Финансы и статистика, 1998 г. – 266с.

22. Роберт Педжен, Тодд Леммл. Удаленный доступ. – М.: ЛОРИ, 2002. – 360с.

23. Русев Д. Технологии беспроводного доступа: Справочник. – СПб.: BHV, 2002. – 352с.

24. Симонович С., Г.Евсеев. Практическая информатика. – М.: ACT, 2000. – 479с.

25. Спортак М., Паппас Ф. Компьютерные сети и сетевые технологии. – М.: Diasoft, 2005. – 720с.

26. Таненбаум Э. Компьютерные сети. – 4-е изд. – СПб.: Питер, 2002. – 991с.

27. Флинт Д. Локальные сети ЭВМ. – М.: Финансы и статистика, 1986. –158с.

28. Фролов А.В., Фролов Г.В. Локальные сети персональных компьютеров. Использование протоколов IPX, SPX, NetBIOS. Библиотека системного программиста. – М.: Диалог-мифи, 1993. – 160с.

29. Халеби С. Принципы маршрутизации в Internet. –2 изд. – М.: Диалектика, 2001. – 448с.

30. Чуркин В.И. Проектирование вычислительных сетей: Учебное пособие. ­– СПб.: СПИАП, 1992. – 86с.

Иртегов Д.В. Введение в сетевые технологии. СПб., 2004. – С.86

Ибе О. Сети и удаленный доступ. Протоколы, проблемы, решения. М., 2003. – С.241

Шиндер Д. Основы компьютерных сетей. М., 2002. – С.89

Бройдо В.С. Вычислительные системы, сети и телекоммуникации. СПб., 2002. – С.358

Блэк Ю. Сети ЭВМ: Протоколы, стандарты, интерфейсы. М., 1998. – С.156

Гук М. Аппаратные средства локальных сетей. Энциклопедия. СПб., 2000. – С.115

Кульгин М. Практика построения компьютерных сетей. Для профессионалов. СПб., 2001. – С.45

Максимов Н.В., Попов И.И. Компьютерные сети. М., 2007. – С.352

Локальная сеть - важный элемент любого современного предприятия, без которого невозможно добиться максимальной производительности труда. Однако чтобы использовать возможности сетей на полную мощность, необходимо их правильно настроить, учитывая также и то, что расположение подсоединенных компьютеров будет влиять на производительность ЛВС.

Понятие топологии

Топология локальных компьютерных сетей - это месторасположение рабочих станций и узлов относительно друг друга и варианты их соединения. Фактически это архитектура ЛВС. Размещение компьютеров определяет технические характеристики сети, и выбор любого вида топологии повлияет на:

  • Разновидности и характеристики сетевого оборудования.
  • Надежность и возможность масштабирования ЛВС.
  • Способ управления локальной сетью.

Таких вариантов расположения рабочих узлов и способов их соединения много, и количество их увеличивается прямо пропорционально повышению числа подсоединенных компьютеров. Основные топологии локальных сетей - это "звезда", "шина" и "кольцо".

Факторы, которые следует учесть при выборе топологии

До того как окончательно определиться с выбором топологии, необходимо учесть несколько особенностей, влияющих на работоспособность сети. Опираясь на них, можно подобрать наиболее подходящую топологию, анализируя достоинства и недостатки каждой из них и соотнеся эти данные с имеющимися для монтажа условиями.

  • Работоспособность и исправность каждой из рабочих станций, подсоединенных к ЛВС. Некоторые виды топологии локальной сети целиком зависят от этого.
  • Исправность оборудования (маршрутизаторов, адаптеров и т. д.). Поломка сетевого оборудования может как полностью нарушить работу ЛВС, так и остановить обмен информацией с одним компьютером.
  • Надежность используемого кабеля. Повреждение его нарушает передачу и прием данных по всей ЛВС или же по одному ее сегменту.
  • Ограничение длины кабеля. Этот фактор также важен при выборе топологии. Если кабеля в наличии немного, можно выбрать такой способ расположения, при котором его потребуется меньше.

О топологии «звезда»

Этот вид расположения рабочих станций имеет выделенный центр - сервер, к которому подсоединены все остальные компьютеры. Именно через сервер происходят процессы обмена данными. Поэтому оборудование его должно быть более сложным.

Достоинства:

  • Топология локальных сетей "звезда" выгодно отличается от других полным отсутствием конфликтов в ЛВС - это достигается за счет централизованного управления.
  • Поломка одного из узлов или повреждение кабеля не окажет никакого влияния на сеть в целом.
  • Наличие только двух абонентов, основного и периферийного, позволяет упростить сетевое оборудование.
  • Скопление точек подключения в небольшом радиусе упрощает процесс контроля сети, а также позволяет повысить ее безопасность путем ограничения доступа посторонних.

Недостатки:

  • Такая локальная сеть в случае отказа центрального сервера полностью становится неработоспособной.
  • Стоимость "звезды" выше, чем остальных топологий, поскольку кабеля требуется гораздо больше.

Топология «шина»: просто и дешево

В этом способе соединения все рабочие станции подключены к единственной линии - коаксиальному кабелю, а данные от одного абонента отсылаются остальным в режиме полудуплексного обмена. Топологии локальных сетей подобного вида предполагают наличие на каждом конце шины специального терминатора, без которого сигнал искажается.

Достоинства:

  • Все компьютеры равноправны.
  • Возможность легкого масштабирования сети даже во время ее работы.
  • Выход из строя одного узла не оказывает влияния на остальные.
  • Расход кабеля существенно уменьшен.

Недостатки:

  • Недостаточная надежность сети из-за проблем с разъемами кабеля.
  • Маленькая производительность, обусловленная разделением канала между всеми абонентами.
  • Сложность управления и обнаружения неисправностей за счет параллельно включенных адаптеров.
  • Длина линии связи ограничена, потому эти виды топологии локальной сети применяют только для небольшого количества компьютеров.

Характеристики топологии «кольцо»

Такой вид связи предполагает соединение рабочего узла с двумя другими, от одного из них принимаются данные, а второму передаются. Главной же особенностью этой топологии является то, что каждый терминал выступает в роли ретранслятора, исключая возможность затухания сигнала в ЛВС.

Достоинства:

  • Быстрое создание и настройка этой топологии локальных сетей.
  • Легкое масштабирование, требующее, однако, прекращения работы сети на время установки нового узла.
  • Большое количество возможных абонентов.
  • Устойчивость к перегрузкам и отсутствие сетевых конфликтов.
  • Возможность увеличения сети до огромных размеров за счет ретрансляции сигнала между компьютерами.

Недостатки:

  • Ненадежность сети в целом.
  • Отсутствие устойчивости к повреждениям кабеля, поэтому обычно предусматривается наличие параллельной резервной линии.
  • Большой расход кабеля.

Типы локальных сетей

Выбор топологии локальных сетей также следует производить, основываясь на имеющемся типе ЛВС. Сеть может быть представлена двумя моделями: одноранговой и иерархической. Они не очень отличаются функционально, что позволяет при необходимости переходить от одной из них к другой. Однако несколько различий между ними все же есть.

Что касается одноранговой модели, ее применение рекомендуется в ситуациях, когда возможность организации большой сети отсутствует, но создание какой-либо системы связи все же необходимо. Рекомендуется создавать ее только для небольшого числа компьютеров. Связь с централизованным управлением обычно применяется на различных предприятиях для контроля рабочих станций.

Одноранговая сеть

Этот тип ЛВС подразумевает равноправие каждой рабочей станции, распределяя данные между ними. Доступ к информации, хранящейся на узле, может быть разрешен либо запрещен его пользователем. Как правило, в таких случаях топология локальных компьютерных сетей «шина» будет наиболее подходящей.

Одноранговая сеть подразумевает доступность ресурсов рабочей станции остальным пользователям. Это означает возможность редактирования документа одного компьютера при работе за другим, удаленной распечатки и запуска приложений.

Достоинства однорангового типа ЛВС:

  • Легкость реализации, монтажа и обслуживания.
  • Небольшие финансовые затраты. Такая модель исключает надобность в покупке дорогого сервера.

Недостатки:

  • Быстродействие сети уменьшается пропорционально увеличению количества подсоединенных рабочих узлов.
  • Отсутствует единая система безопасности.
  • Доступность информации: при выключении компьютера данные, находящиеся в нем, станут недоступными для остальных.
  • Нет единой информационной базы.

Иерархическая модель

Наиболее часто используемые топологии локальных сетей основаны именно на этом типе ЛВС. Его еще называют «клиент-сервер». Суть данной модели состоит в том, что при наличии некоторого количества абонентов имеется один главный элемент - сервер. Этот управляющий компьютер хранит все данные и занимается их обработкой.

Достоинства:

  • Отличное быстродействие сети.
  • Единая надежная система безопасности.
  • Одна, общая для всех, информационная база.
  • Облегченное управление всей сетью и ее элементами.

Недостатки:

  • Необходимость наличия специальной кадровой единицы - администратора, который занимается мониторингом и обслуживанием сервера.
  • Большие финансовые затраты на покупку главного компьютера.

Наиболее часто используемая конфигурация (топология) локальной компьютерной сети в иерархической модели - это «звезда».

Выбор топологии (компоновка сетевого оборудования и рабочих станций) является исключительно важным моментом при организации локальной сети. Выбранный вид связи должен обеспечивать максимально эффективную и безопасную работу ЛВС. Немаловажно также уделить внимание финансовым затратам и возможности дальнейшего расширения сети. Найти рациональное решение - непростая задача, которая выполняется благодаря тщательному анализу и ответственному подходу. Именно в таком случае правильно подобранные топологии локальных сетей обеспечат максимальную работоспособность всей ЛВС в целом.

Теоретические

Понятие топологии сети. Виды топологий сети.

Топология сети - способ соединения компьютеров в сеть.

Виды топологии сети:

1. Топология шина (предполагает использование одного кабеля, к которому подсоединены все рабочие станции. Общий кабель используется всеми станциями по очереди. Все сообщения, посылаемые отдельными рабочими станциями, принимаются и прослушиваются всеми остальными компьютерами, подключенными к сети. Из этого потока каждая рабочая станция отбирает адресованные только ей сообщения.

2. Кольцо – это топология локальной сети, в которой рабочие станции подключены последовательно друг к другу, образуя замкнутое кольцо. Данные передаются от одной рабочей станции к другой в одном направлении (по кругу). Каждый ПК работает как повторитель, ретранслируя сообщения к следующему ПК, т.е. данные передаются от одного компьютера к другому как бы по эстафете. простота установки;

3. Звезда – это топология локальной сети, где каждая рабочая станция присоединена к центральному устройству (коммутатору или маршрутизатору). Центральное устройство управляет движением пакетов в сети. Каждый компьютер через сетевую карту подключается к коммутатору отдельным кабелем.При необходимости можно объединить вместе несколько сетей с топологией “звезда” – в результате вы получите конфигурацию сети с древовидной топологией. Древовидная топология распространена в крупных компаниях. Мы не будем ее подробно рассматривать в данной статье.

Технология клиент – сервер. Сетевой сервер. Файловый сервер.

Технология клиент-сервер - это особый способ взаимодействия компьютеров в локальной сети, когда один из компьютеров (сервер) предоставляет свои ресурсы другому компьютеру (клиенту). Согласно этим различают одноранговые и серверные сети.
В одноранговых сетях нет выделенных серверов, каждый компьютер может выполнять функции и клиента, и сервера. Компьютер, который в настоящее время выполняет функции сервера, выделяет часть своих ресурсов в общее пользование всем остальным компьютерам сети. Обычно, одноранговые сети создаются на базе компьютеров с одинаковыми параметрами. Одноранговые сети являются достаточно простыми в настройке и эксплуатации. Поэтому в случае, когда сеть состоит из небольшого количества компьютеров и ее основной функцией является обмен информацией между абонентскими системами, предпочтение отдают одноранговой архитектуре.

В сети с выделенным сервером четкое разделение функций между компьютерами: одни из них постоянно являются клиентами, а другие - серверами. Учитывая разнообразие сервисов, предоставляющих компьютерные сети, существует несколько типов серверов: сетевой, файловый, почтовый, сервер печати и т.д…
Сетевой сервер - это специализированный компьютер, ориентированный на выполнение основного объема вычислительных работ и функций по управлению компьютерной сетью. Этот сервер содержит ядро сетевой операционной системы, под управлением которой осуществляется работа всей локальной сети. Сетевой сервер имеет достаточно высокое быстродействие и большой объем памяти. При такой организации сети функции абонентской системы сводятся к ввода- вывода информации и обмена ею с сетевым сервером.
Файловым сервером называется компьютер, основной функцией которого является сохранение массивов данных, больших по объему, и организация эффективного доступа к ним. Он не обрабатывает и не вносит изменений в файлы, которые он хранит и передает. Сервер вообще может « не знать », содержащий файл: текстовый документ, графическое изображение или электронную таблицу. Всего на файловом сервере даже может не быть клавиатуры и монитора. Все изменения в файлах данных осуществляются с клиентских абонентских систем. Для этого клиенты считывают файлы данных с файлового сервера, вносят в данные необходимые изменения и возвращают файлы данных на файловый сервер. Такая организация является эффективной при работе большого количества пользователей с общей базой данных. В больших сетях может одновременно использоваться несколько файловых серверов.
3. Коммуникационная сеть . Понятие. Назначение.

Коммуникационной сетью называется сеть, основной задачей которой является передача данных. Коммуникационная сеть, именуемая также сетью передачи данных, является ядром информационной сети, обеспечивающим передачу и некоторые виды обработки данных. На базе одной коммуникационной сети можно создать несколько информационных сетей. Задачей коммуникационной сети является доставка адресатам блоков данных, которые при этом не должны терять своей целостности, доставляться без ошибок и искажения. Важными в сети являются также операции по предотвращению больших очередей и переполнения буферов систем, Коммуникационные сети делятся на три класса: сети с маршрутизацией данных, сети с селекцией данных и смешанные сети.

Наряду с сетями, каждая из которых функционирует в соответствии с принятым протоколом, появились многопротокольные сети. Их создание требует больших капиталовложений. Однако затраченные средства быстро окупаются гибкостью работы этих сетей. Высокопроизводительные коммуникационные сети стали именоваться базовыми сетями. Примером такой сети является сеть TWBNET. Высокие скорости обеспечивают сети ретрансляции кадров

4.Аналоговая сеть. Понятие. Назначение.

Аналоговая сеть - коммуникационная сеть, передающая и обрабатывающая аналоговые сигналы. Необходимость передачи звука, речи и изображений привела к созданию аналоговых сетей, в которых носителем данных является аналоговый сигнал. Для передачи речи были созданы телефонные сети.

Как и любая сеть с маршрутизацией данных, телефонная состоит из узлов коммутации, именуемых Автоматическими телефонными станциями (АТС). АТС обеспечивают коммутацию каналов, а в качестве абонентских систем, в первую очередь, используются телефонные аппараты. Чаще всего, телефонная сеть опирается на кабельную сеть. Вместе с этим, используются и телефонные радиосети. Первоначально телефонная сеть, обеспечивая телекоммуникации, передавала аналоговые сигналы и поэтому была аналоговой сетью. Это было связано с тем, что акустический сигнал имеет непрерывную форму. Соответственно речи Человека частотный диапазон в аналоговой телефонной сети был выбран от 300 до 3400 Гц. Это позволяет передавать понятную речь и даже узнавать говорящего.

В настоящее время телефонная сеть быстро переходит на дискретные сигналы. Это дает возможность использовать многопрофильные коммуникационные сети, строить работу телефонных станций на базе микропроцессоров, расширять виды предоставляемых сетевых служб, повышать качество передачи информации. Дискретная телефонная сеть надежна в работе и обеспечивает высокую помехоустойчивость связи.

Виды коммуникационных сетей

Выделяюттри вида коммуникационных сетей:открытые, замкнутые и комбинированные.

В открытых сетях движение информации может быть остановлено, потому что оно попадает к элементу структуры управления, находящемуся в конце канала, оно может также наткнуться на «посредника» или «контролера» (промежуточное звено в сети коммуникации), который по каким-то причинам этому движению препятствует и которого нельзя минуть (Сеть типа «Змея», «Звезда», «Шпора», «Тент», «Палатка»).

В замкнутых сетях тупики и контролеры либо отсутствуют, либо могут быть обойдены. (Сеть типа «Дом», «Круг», «Колесо»).

Комбинированные сети сочетают в себе оба принципа построения и присущи больше крупным многоуровневым организациям.

Наиболее простой вид открытой коммуникационной сети - сеть типа «Змея». Элементы структуры управления, которые она соединяет, находятся в тупиках, а элемент находящийся о середине выполняет роль не только посредника коммуникаций, но может контролировать их. Такая сеть соединяет работников одного уровня управления, имея чаще всего неформальный характер, или является элементом более сложной сети.

Устройства передачи данных

Для подключения компьютеров к среде передачи используются специализированные устройства. Основными функциями этих устройств является физическое кодирование и декодирование данных, а также синхронизация приема и передачи. Наряду с этим современные устройства могут решать задачи логической организации передачи, относящиеся к канальному уровню модели OSI . Наиболее известными в настоящее время устройствами являются модемы и сетевые адаптеры .

Модем (МОдулятор/ДЕМодулятор, Modem) представляет собой устройство, осуществляющее физическое кодирование данных методом модуляции. Существуют различные типы модемов для подключения к сетям по разным физическим каналам, как правило, не предназначенным для построения компьютерных сетей. Так, для подключения по телефонным линиям используются телефонные модемы (или - просто модемы, поскольку исторически под этим термином понималось устройство для подключения по телефонным линиям), для подключения по кабельным каналам - кабельные модемы, для подключения по радиоканалам - радиомодемы. Технические характеристики используемого канала накладывают ограничения на правила формирования сигналов (модуляции).

Обычно модемы используются для взаимодействия в сетях типа "точка-точка". В таких сетях не требуется сложной логической организации передачи, поскольку нет необходимости упорядочивать взаимодействие нескольких пар абонентов. К числу дополнительных функций, связанных с организацией передачи, можно отнести сжатие передаваемых данных и обнаружение и исправление ошибок с целью повышения эффективности и надежности передачи по низкокачественным каналам, например, телефонных (подробнее см. раздел "Канальный уровень").

Сетевой адаптер (сетевая плата, плата сетевого интерфейса, Network Interface Card) - это устройство, которое предназначено для подключения компьютера к высококачественным физическим каналам компьютерных сетей. Поэтому для физического кодирования передаваемых данных используются различные типы цифрового кодирования.

Поскольку компьютерные сети могут иметь сложные топологии? и в них одновременно могут осуществлять взаимодействие несколько пар абонентов, то требуется решать достаточно сложные задачи по упорядочиванию этого взаимодействия. Поэтому сетевые адаптеры реализуют также определенное число логических функций организации взаимодействия, например, адресации абонентов и упорядочивания одновременного доступа нескольких к общей физической линии и т.д. (подробнее см. раздел "Канальный уровень").

Протоколы TCP, ICMP, UDP

TCP (Transmission Control Protocol) осуществляет обмен данными между двумя компьютерами с предварительно установленной логической связью. Он постоянно используется в Интернете, поскольку надежность соединения и универсальность в этом случае играют очень большую роль. Кроме того, TCP обеспечивает надежность доставки сообщений, принимая подтверждение доставки каждой его порции путем подтверждающих пакетов, каждый раз присылаемых в ответ на полученное сообщение. При этом в самом начале устанавливается логическая связь между компьютером-отправителем и компьютером-получателем, что уже гарантирует доставку пакетов.

ICMP (Internet Control Message Protocol) контролирует протокол IP, отслеживает любые изменения, влияющие на процесс маршрутизации. При возникновении каких-либо ошибок об этом узнают и отправитель, и получатель. При этом в сообщении указывается причина сбоя.

UDP (User Datagram Protocol) – при использовании этого протокола не нужно иметь установленное логическое соединение двух компьютеров. Когда передаются данные другому компьютеру, предполагается, что он где-то есть, то есть подключен к сети. В этом случае нет никакой гарантии, что обмен данными произойдет. При этом к отсылаемому пакету просто добавляется IP-адрес машины, которой нужно отослать сообщение. Если сообщение принято, присылается подтверждение об этом, иначе отсылка данных повторяется через некоторый промежуток времени.

Классы IP-адресов

Существует 5 классов IP-адресов – A, B, C, D, E. Принадлежность IP-адреса к тому или иному классу определяется значением первого октета (W).

IP-адреса первых трех классов предназначены для адресации отдельных узлов и отдельных сетей. Такие адреса состоят из двух частей – номера сети и номера узла.

Компьютеры, входящие в одну и ту же сеть должны иметь IP-адреса с одинаковым номером сети.

Маска сети - это битовая маска, которая в результате применения побитовой конъюнкции (логической операции И) к IP-адресу узла позволяет указать, какая часть этого IP-адреса относится к адресу сети, а какая - к адресу самого узла в этой сети, и определяет максимально возможное количество узлов в этом сетевом пространстве (фактически указывает размер сети).

Виды беспроводных сетей

Wi-Fi (Wireless Fidelity ) - это промышленное название технологии беспроводного обмена данными, относящееся к группе стандартов организации беспроводных сетей IEEE 802.11 или просто 802.11. Сегодня термин Wi-Fi в равной степени относится к любому из стандартов 802.11b, 802.11a, 802.11g и 802.11n.

Радиус действия со штатными антеннами можно примерно оценить в 150м на открытой местности и 50м в помещении.

GPRS (General Packet Radio Service - пакетная радиосвязь общего назначения) - сервис, не связанный с передачей речи, который обеспечивает передачу пакетов протокола IP в существующих мобильных телефонных сетях, обеспечивая доступ к интернету с мобильных телефонов.

IrDA (Infrared Data Association) - технология для беспроводного соединения компьютеров и внешних устройств. Принцип этой технологии в том, что она преобразует информацию в инфракрасное излучение и передает ее от одного компонента устройства к другому.

Bluetooth - производственная спецификация Wireless Personal Area Network - WPAN (беспроводных персональных сетей). Bluetooth обеспечивает обмен информацией между такими устройствами как персональные компьютеры, мобильные телефоны, принтеры, цифровые фотоаппараты, мышки, клавиатуры, наушники, гарнитуры на сверхвысокой радиочастоте 2.4 ГГц для ближней связи. Bluetooth позволяет этим устройствам сообщаться, когда они находятся в радиусе до 100 метров друг от друга (дальность сильно зависит от преград и помех), даже в разных помещениях.

12. Аппаратура линий связи

Аппаратура передачи данных , в компьютерных сетях непосредственно присоединяет компьютеры или локальные сети пользователя к линии связи и является. таким образом, пограничным оборудованием. Примерами DCE являются модемы, терминальные адаптеры сетей ISDN, устройства подключения к цифровым каналам. Обычно DCE работает на физическом уровне, отвечая за передачу информации в физическую среду (в линию) и прием из нее сигналов нужной формы и мощности.

Аппаратура пользователя линии связи, вырабатывающая данные для передачи по линии связи и подключаемая непосредственно к аппаратуре передачи данных, носит обобщенное название оконечное оборудование данных , или ООД (Data Terminal Equipment, DTE). Примером DTE могут служить компьютеры, коммутаторы или маршрутизаторы.

Промежуточная аппаратура обычно используется на линиях связи большой протяженности. Она решает две основные задачи:

  • улучшение качества сигнала;
  • создание постоянного составного канала связи между двумя абонентами сети.

В локальных сетях промежуточная аппаратура может совсем не использоваться. А вот в глобальных сетях необходимо обеспечить качественную передачу сигналов на расстояние в сотни и тысячи километров. Поэтому без усилителей (повышающих мощность сигналов) и регенераторов (наряду с повышением мощности восстанавливающих форму импульсных сигналов, исказившихся при передаче на большое расстояние), установленных через определенное расстояние, построить территориальную линию невозможно. В глобальной сети необходима также и промежуточная аппаратура другого рода - мультиплексоры, демультиплексоры и коммутаторы.

Промежуточная аппаратура канала связи прозрачна для пользователя, он ее не замечает и не учитывает в своей работе.

13. Плата сетевого адаптера. Понятие. Назначение.

Плата сетевого адаптера выступает в качестве физического интерфейса или соединения между компьютером и сетевым кабелем. Платы вставляются в слоты расширения системной шины всех сетевых компьютеров и серверов. Назначение платы сетевого адаптера:

  • подготовка данных, поступающих от компьютера, к передаче по сетевому кабелю;
  • передача (или прием) данных другому компьютеру;
  • управление потоком данных между компьютером и кабельной системой.
  1. Подготовка данных. Плата сетевого адаптера принимает циркулирующие по системной шине параллельные данные, организует их для последовательной (побитовой) передачи. Этот процесс завершается переводом цифровых данных компьютера в электрические или оптические сигналы, которые и передаются по сетевым кабелям. Отвечает за это преобразование трансивер.
  2. Сетевой адрес. Помимо преобразования данных плата СА должна указать свой адрес, чтобы ее можно было отличить от других плат. За каждым производителем СА закреплен стандартом IEEE некоторый интервал адресов. Производители "прошивают" эти адреса в микросхеме плат. Благодаря этому, каждый СА и, следовательно, каждый сетевой компьютер имеет уникальный адрес в сети. При передаче данные из памяти компьютера через системную шину поступают в СА. Обычно они поступают быстрее, чем их способна передать плата СА, поэтому она должна иметь буфер для их временного хранения. Это позволяет согласовать скорости передачи по шине без потерь производительности и искажения данных.
  3. Передача и управление данными. Перед посылкой данных по сети плата СА проводит "электронный диалог" с принимающим СА, во время которого они "оговаривают":
  • максимальный размер блока передаваемых данных;
  • объем данных, передаваемый без подтверждения о получении;
  • интервалы между передачами блоков;
  • объем данных, который может принять СА, не переполняясь;
  • скорость передачи данных.

14. Сетевые устройства и средства коммуникаций

Для соединения устройств в сети используется специальное оборудование:

1. Сетевая карта - это устройство, устанавливаемое в компьютер и предоставляющее ему возможность взаимодействия с сетью. В настоящее время выпускается большое количество разнообразных сетевых карт.

Для соединения сетевой карты и среды передачи данных применяются разъемы, зависящие от используемой среды передачи данных. Например, для тонкого коаксиального кабеля используются разъемы BNC, для витой пары пятой категории - разъемы RJ-45.

2.Коннекторы представляют собой разъемы, состоящие из двух частей - вилки и розетки, предназначенные для соединения отрезков кабеля или подсоединения кабеля к какому-либо устройству. Существующие типы коннекторов:

3. Трансивер - это специальное устройство, используемое для подключения PC к локальной компьютерной сети Ethernet , создаваемой на толстом кабеле . Такая сеть обладает гораздо лучшей защитой от электромагнитного излучения, чем сеть на тонком кабеле, и может иметь длину до 2,5 км (при использовании дополнительных устройств).

4. Хаб (Концентратор) является центральным устройством сети на витой паре, от него зависит ее работоспособность. Его необходимо подключать к сети электропитания и располагать в легкодоступном месте, чтобы можно было без проблем подключать кабели и следить за индикацией. Концентраторы выпускаются на разное количество портов, чаще всего на 8, 12, 16, 24.

5. Коммутатор (фактически переключающий концентратор) - по схеме включения устройство, аналогичное концентратору, но имеет некоторые существенные отличия:

· между любыми двумя станциями в сети нет ограничения четырьмя устройствами;

· управляемый коммутатор может использоваться в закольцованной сети;

· в управляемом коммутаторе можно управлять каждым портом в отдельности (ограничение пропускной способности, запрещение коммутации отдельных портов и пользователей);

6. Репитеры - это устройства, используемые для "удлинения" локальных компьютерных сетей.

Определить физический (MAC) адрес адаптера

Для этого в Windows XP (или Windows 7) выполните команду Пуск-Все программы-Стандартные-Командная строка и введите команду ipconfig/all.

Интерфейс программы Netemul

Интерфейс состоит из:

 Главного меню программы;

 Панели устройств (на рисунке панель отмечена цифрой 1);

 Панели параметров (на рисунке панель отмечена цифрой 2)

 Сцены – рабочей области программы.

Главное меню программы NetEmul служит для настройки работы самой программы. Главное меню состоит из пунктов: Файл, Правка, Вид, Объект, Сервис, Скрипты, Помощь .

 С помощью пункта Файл можно создать новый проект, сохранить или загрузить его, а также запустить предпросмотр получившейся модели сети и распечатать ее;

 Пункт Правка служит для отмены или возврата действия пользователя.

 Пункт Вид используется для включения или отключения панелей программы;

 Пункт Объект полностью копирует функции контекстного меню, которое вызывается по нажатию правой кнопки мыши. Важно отметить, что данный пункт становится активным лишь после того, как будет выделен какой-либо из объектов на сцене;

 Пункт Сервис позволяет просмотреть общую статистику для всей сети, в которой указывается количество каждого из устройств и общий трафик;

 Пункт Помощь содержит сведения об авторах и краткую справку по использованию программы NetEmul.

С помощью программы NetEmul необходимо построить одноранговую локальную сеть, добавив на рабочую область два компьютера и один концентратор. Задайте имя устройству «Концентратор» с помощью заметок. Проверить работоспособность сети.

На панели устройств выберите объект «Компьютер», и щелкните левой кнопкой мыши на свободные клетки поля, чтобы добавить устройства;

Таким же образом добавьте на рабочую область устройство «Концентратор».

Для присвоения компьютерам IP-адресов:

 Выделите компьютер, щелкнув на него левой кнопкой мыши;

 В появившемся окне в строке «IP-Адрес» введите IP-адрес 192.168.0.1 и нажмите кнопку «ОК»;

 Таким же образом присвойте IP-адрес 192.168.0.2 второму компьютеру.

Для соединения устройств:

 Наведите курсор мыши на устройство «Концентратор», и зажав левую кнопку мыши проведите линию до первого компьютера, после чего отпустите левую кнопку мыши;

 В появившемся диалоговом окне настроек интерфейсов выберите в левой колонке пункт «LAN1», а во второй «eth0», и нажмите кнопку «Соединить»;

 Таким же образом соедините концентратор со вторым компьютером, выбрав в диалоговом окне настроек интерфейсов в левой колонке пункт «LAN2».

Для того, чтобы задать собственное имя устройству:

 Нажмите левую кнопку мыши над концентратором на рабочей области;

 В появившемся поле желтого цвета задайте имя «Концентратор»;

Для проверки работоспособности сети:

 Наведите курсор мыши на первый компьютер и нажмите левую кнопку;

 В появившемся диалоговом окне «Отправка» выберите TCP протокол для передачи данных и установите необходимый объем для передачи, после чего нажмите кнопку «Далее»;

В случае верной настройки сети, по линиям, которые соединяют устройства, начнется передача данных, которые представлены в программе в виде точек.

С помощью программы NetEmul необходимо построить локальную сеть, которая разделена на три виртуальных подсети. (Приложение Ф)Проверить работоспособность сети.

Д ля добавления устройств на рабочую область:

 На панели устройств выберите объект «Компьютер», и щелкните левой кнопкой мыши на свободные клетки поля, чтобы добавить устройства;

 Таким же образом добавьте на рабочую область устройства «Коммутатор» и «Маршрутизатор»;

 Разместите устройства так, чтобы по центру рабочей области находился маршрутизатор, слева, справа и снизу от него располагались коммутаторы, а рядом с каждым коммутатором находилось по 2 компьютера.

2. Для того, чтобы задать собственное имя подсетям:

 На панели инструментов выберите объект «Текстовая надпись»;

 Нажмите левую кнопку мыши над коммутатором слева на рабочей области;

 В появившемся поле желтого цвета задайте имя «LAN1»;

 Таким же образом задайте имя «LAN2» для второй подсети (справа) и для третьей подсети (внизу).

3. Для организации подсетей:

 Организация первой подсети

a. Выделите первый компьютер в подсети LAN1, щелкнув на него левой кнопкой мыши;

c. В появившемся окне в строке «IP-Адрес» введите IP-адрес 110.110.110.2 и нажмите кнопку «ОК»;

d. Таким же образом присвойте IP-адрес 110.110.110.3 второму компьютеру в подсети LAN1;

 Организация второй подсети

a. Выделите первый компьютер в подсети LAN2, щелкнув на него левой кнопкой мыши;

b. На панели параметров выберите пункт «Редактировать интерфейсы»;

c. В появившемся окне в строке «IP-Адрес» введите IP-адрес 120.120.120.2 и нажмите кнопку «ОК»;

d. Таким же образом присвойте IP-адрес 110.110.110.3 второму компьютеру в подсети LAN2;

 Организация третьей подсети

a. Выделите первый компьютер в подсети LAN3, щелкнув на него левой кнопкой мыши;

b. На панели параметров выберите пункт «Редактировать интерфейсы»;

c. В появившемся окне в строке «IP-Адрес» введите IP-адрес 130.130.130.2 и нажмите кнопку «ОК»;

d. Таким же образом присвойте IP-адрес 130.130.130.3 второму компьютеру в подсети LAN1;

4. Для соединения устройств:

 На панели инструментов выберите объект «Кабель»;

 Наведите курсор мыши на устройство «Коммутатор» из подсети LAN1, и зажав левую кнопку мыши проведите линию до первого компьютера из подсети LAN1, после чего отпустите левую кнопку мыши;

 Таким же образом соедините все компьютеры подсетей LAN2 и LAN3 с соответствующими коммутаторами;

 После соединения компьютеров с коммутаторами, соедините маршрутизатор с коммутаторами из всех трех подсетей.

5. Для настройки маршрутизатора:

 Выделите первый маршрутизатор, щелкнув на него левой кнопкой мыши;

 На панели параметров выберите пункт «Редактировать интерфейсы»;

 В появившемся окне в «Интерфейс» перейдите на вкладку LAN1 и в строке «IP-адрес» введите 110.110.110.1;

 Перейдите на вкладку LAN2 и таким же образом задайте IP-адрес 120.120.120.1;

 Перейдите на вкладку LAN3 и таким же образом задайте IP-адрес 130.130.130.1;

 Нажмите кнопку «ОК» для закрытия окна и сохранения изменений.

 Выделите маршрутизатор, щелкнув на него правой кнопкой мыши, и в контекстном меню выберите пункт «Свойства»;

 Поставьте флажок напротив пункта «Включить маршрутизацию», и нажмите кнопку «ОК» для сохранения изменений.

6. Для проверки работоспособности сети:

 На панели устройств выберите объект «Отправить данные»;

13. С помощью программы NetEmul необходимо построить локальную сеть по образцу (Приложение Х).Разбить сеть на 2 подсети: 192.168.1.0-192.168.1.127 (слева) и 192.168.1.128-192.168.1.255 (справа) с маской 255.255.255.128.Проверить работоспособность сети.

Добавить на рабочую область маршрутизатор, 2 коммутатора, 8 компьютеров. Соеденить их с помощью линий. Для настройки ip-адреса интерфейса ПК из меню правой кнопки мыши открываем окно Интерфейсы и для левой (первой), подсети выставляем ip-адреса от 192.168.1.1 до 192.168.1.5 и маску подсети 255.255.255.128. Затем для правой (второй) подсети выставляем ip-адреса от 192.168.1.129 до 192.168.1.133 и маску подсети 255.255.255.128. После нажатия на кнопку "ОК" или "Применить", мы можем наблюдать, как индикатор поменял цвет с желтого на зеленый и от нашего устройства, которому сейчас дали адрес, побежал кадр Arp-протокола. Это нужно для того, чтобы выявить, нет ли в нашей сети повторения адресов. В поле "Описание" необходимо имя каждому компьютеру. Оно в дальнейшем будет всплывать в подсказке при наведении мыши на устройство, а также при открытии журнала для устройства заголовок будет содержать именно это описание.

Настройка маршрутизатора

14. С помощью программы NetEmul необходимо построить локальную сеть по образцу (Приложение Ц).Разбить сеть на 2 подсети: 192.168.1.0-192.168.1.127 (слева) и 192.168.1.128-192.168.1.255 (справа) с маской 255.255.255.128.Проверить работоспособность сети.

Настройка компьютеров

Добавить на рабочую область хаб, коммутатор, роутер, 8 компьютеров, соеденить их с помощью линий.

Для настройки ip-адреса интерфейса ПК из меню правой кнопки мыши открываем окно Интерфейсы и для левой (первой), подсети выставляем ip-адреса от 192.168.1.1 до 192.168.1.5 и маску подсети 255.255.255.128. Затем для правой (второй) подсети выставляем ip-адреса от 192.168.1.129 до 192.168.1.133 и маску подсети 255.255.255.128. После нажатия на кнопку "ОК" или "Применить", мы можем наблюдать, как индикатор поменял цвет с желтого на зеленый и от нашего устройства, которому сейчас дали адрес, побежал кадр Arp-протокола. Это нужно для того, чтобы выявить, нет ли в нашей сети повторения адресов. В поле "Описание" необходимо имя каждому компьютеру. Оно в дальнейшем будет всплывать в подсказке при наведении мыши на устройство, а также при открытии журнала для устройства заголовок будет содержать именно это описание.

Настройка маршрутизатора

Пока послать сообщения из одной такой подсети в другую мы не можем. Необходимо дать IP адреса каждому интерфейсу маршрутизатора, а на конечных узлах установить шлюзы по умолчанию. В подсети левее маршрутизатора у всех узлов должен быть шлюз 192.168.1.126, правее - 192.168.1.254

Для проверки работоспособности сети необходимо нажать на значок

При наведении мыши на рабочую область вы увидите оранжевый кружок, это значит, что надо указать от какого компьютера данные будут отправлены. Необходимо отправить данные с компьютера одной подсети на компьютер другой подсети.

Маршрутизаторы

Маршрутизаторы используется для поиска оптимального маршрута передачи данных на основании специальных алгоритмов маршрутизации, например выбор маршрута (пути) с наименьшим числом транзитных узлов.

Работают на сетевом уровне модели OSI.

Коммутаторы

Коммутаторы - это устройства, работающие на канальном уровне модели OSI и предназначенные для объединения нескольких узлов в пределах одного или нескольких сегментах сети. Передаёт пакеты коммутатор на основании внутренней таблицы - таблицы коммутации, следовательно трафик идёт только на тот MAC-адрес, которому он предназначается, а не повторяется на всех портах (как на концентраторе).

Концентраторы

Концентратор повторяет пакет, принятый на одном порту на всех остальных портах.

Беспроводные устройства

Беспроводные технологии Wi-Fi и сети на их основе. Включает в себя точки доступа.

Линии связи

С помощью этих компонентов создаются соединения узлов в единую схему.

Packet Tracer поддерживает широкий диапазон сетевых соединений.

В программе Cicso Packet Tracer построить схему сети по образцу (Приложение И). Проверить работу сети.

В программе Cicso Packet Tracer построить схему сети по образцу (Приложение К). Проверить работу сети.

Запустить программу Cicso Packet Tracer. Добавить на рабочую область элементы согласно образцу. Соединить элементы с помощью линий. Присвоить компьютерам ip – адрес и маску сети, для этого необходимо кликнуть на компьютер – перейти на вкладку – config – FastEthernet. В поле IP Address ввести адрес компьютера (число указанное под компьютером например: 192.168.0.2), затем навести курсор на поле Subnet Mask – маска появится автоматически.

Для проверки работоспособности сети необходимо нажать комбинации клавиш Shift+S, откроется «Панель моделирования». Затем необходимо нажать на . После чего, навести курсор с одного компьютера на другой, нажать Auto Capture/Play . Информация в виде конвертов будет передаваться с одного компьютера на другой.

В программе Cicso Packet Tracer построить схему сети по образцу (Приложение Л). Проверить работу сети.

Запустить программу Cicso Packet Tracer. Добавить на рабочую область элементы согласно образцу. Соединить элементы с помощью линий. Присвоить компьютерам ip – адрес и маску сети, для этого необходимо кликнуть на компьютер – перейти на вкладку – config – FastEthernet. В поле IP Address ввести адрес компьютера (число указанное под компьютером например: 192.168.0.2), затем навести курсор на поле Subnet Mask – маска появится автоматически.

Для проверки работоспособности сети необходимо нажать комбинации клавиш Shift+S, откроется «Панель моделирования». Затем необходимо нажать на . После чего, навести курсор с одного компьютера на другой, нажать Auto Capture/Play . Информация в виде конвертов будет передаваться с одного компьютера на другой.

В программе Cicso Packet Tracer построить схему сети по образцу (Приложение М). Проверить работу сети.

 
Статьи по теме:
Не работает разблокировка при открытии Smart Cover на iPad Honor 6c отключение при закрывании чехла
Чехол S View, которым Samsung оснащает свои смартфоны напоминает нам о старых добрых временах, когда телефоны-раскладушки оснащались небольшим дополнительным дисплеем на задней части крышки. Если вы ни разу не видели S View – то это обычный чехол в виде к
Блокировка в случае кражи или потери телефона
Порою случаются такие моменты, когда возникает необходимость произвести блокировку своей сим карты на определённый период времени. Возможно вы хотите в последствии изменить свой тарифный план или вовсе перестать пользоваться услугами своего мобильного опе
Прошивка телефона, смартфона и планшета ZTE
On this page, you will find the official link to download ZTE Blade L3 Stock Firmware ROM (flash file) on your Computer. Firmware comes in a zip package, which contains Flash File, Flash Tool, USB Driver and How-to Flash Manual. How to FlashStep 1 : Downl
Завис компьютер — какие клавиши нажать на клавиатуре, как перезагрузить или выключить
F1- вызывает «справку» Windows или окно помощи активной программы. В Microsoft Word комбинация клавиш Shift+F1 показывает форматирование текста; F2- переименовывает выделенный объект на рабочем столе или в окне проводника; F3- открывает окно поиска файла