Что такое плавный пуск у болгарки. Плавный пуск коллекторного двигателя

Сопряжен с высокими динамическими нагрузками. За счет массы рабочего диска, в начале вращения на ось редуктора действуют силы инерции. Это влечет за собой некоторые негативные моменты:

  1. Нагрузки на ось при резком старте создают инерционный рывок, который при большом диаметре и массе диска может вырвать электроинструмент из рук;
  2. ВАЖНО! При запуске болгарки, всегда держите инструмент обеими руками, и будьте готовы к его удержанию. В противном случае можно получить травму. Данное предупреждение особенно актуально для тяжелых алмазных или стальных дисков.

  3. При резкой подаче рабочего напряжения на двигатель, возникает перегрузка по току, которая проходит после набора номинальных оборотов;
  4. В результате чего изнашиваются щетки и перегреваются обе обмотки электромотора. При постоянном включении и выключении электроинструмента, перегрев может оплавить изоляцию обмоток и привести к короткому замыканию, с последующим дорогостоящим ремонтом.

  5. Большой крутящий момент при резком наборе оборотов преждевременно изнашивает шестерни редуктора УШМ;
  6. В некоторых случаях возможно отламывание зубьев и заклинивание редуктора.

  7. Перегрузки, которые воспринимает рабочий диск, могут разрушить его при запуске двигателя.
  8. Поэтому наличие защитного кожуха обязательно.

ВАЖНО! Во время запуска болгарки, открытый сектор кожуха должен быть направлен в сторону, противоположную от оператора.

Чтобы лучше понять механику работы, рассмотрим устройство болгарки на чертеже. Хорошо видны все элементы, испытывающие перегрузку при резком старте.

Схематический чертеж расположение рабочих органов и систем управления в болгарке

Для уменьшения пагубных воздействий резкого пуска, производители выпускают болгарки с регулировкой оборотов и плавным пуском.

Регулировка оборотов находится на рукоятке инструмента

Но таким приспособлением оснащаются лишь модели средней и высокой ценовой категории. Многие домашние мастера приобретают УШМ без регулятора и замедления пусковых оборотов. Особенно это касается мощных экземпляров с диаметром отрезного диска более 200 мм. Такую болгарку мало того что тяжело удержать в руках во время запуска, износ механики и электрической части происходит гораздо быстрее.
Выход один – установить плавный пуск болгарки самостоятельно. Существуют готовые заводские устройства с регулятором оборотов и замедлением старта двигателя при запуске.

Готовое устройство для регулировки плавного пуска

Такие блоки устанавливаются внутрь корпуса, при наличии свободного места. Однако, большинство пользователей УШМ предпочитают изготавливать схему для плавного пуска болгарки самостоятельно, и подключать ее в разрыв питающего кабеля.

Как изготовить схему плавного пуска угловой шлифовальной машины своими руками

Популярная схема реализуется на основе управляющей микросхемы фазового регулирования КР118ПМ1, а силовая часть выполнена на симисторах. Такое устройство достаточно просто монтируется, не требует дополнительной настройки после сборки, а стало быть, изготовить ее может мастер без специализированного образования, достаточно уметь держать в руках паяльник.

Электрическая схема регулировки плавного пуска для болгарки

Предложенный блок можно подключить к любому электроинструменту, рассчитанному на переменное напряжение 220 вольт. Отдельный вынос кнопки питания не требуется, доработанный электроинструмент включается штатной клавишей. Схему можно установить как внутрь корпуса болгарки, таки и в разрыв питающего кабеля в отдельном корпусе.

Наиболее практичным является подключение блока плавного пуска к розетке, от которой запитывается электроинструмент. На вход (разъем ХР1) подается питание от сети 220 вольт. К выходу (разъем XS1) подключается расходная розетка, в которую втыкается вилка УШМ.

При замыкании клавиши пуска болгарки, по общей цепи питания подается напряжение на микросхему DA1. На управляющем конденсаторе происходит плавное нарастание напряжения. По мере заряда оно достигает рабочей величины. За счет этого тиристоры в составе микросхемы открываются не сразу, а с задержкой, время которой определяется зарядом конденсатора. Симистор VS1, управляемый тиристорами, открывается с такой же паузой.

Посмотрите видео с подробным разъяснением как сделать и какую схему применить

В каждом полупериоде переменного напряжения, задержка уменьшается в арифметической прогрессии, в результате чего напряжение на входе в электроинструмент плавно возрастает. Этот эффект и определяет плавность запуска двигателя болгарки. Следовательно обороты диска возрастают постепенно, и вал редуктора не испытывает инерционного шока.

Время набора оборотов до рабочего значения определяется емкостью конденсатора С2. Величина 47 мкФ обеспечивает плавный пуск за 2 секунды. При такой задержке нет особого дискомфорта для начала работы с инструментом, и в то же время сам электроинструмент не подвергается избыточным нагрузкам от резкого старта.

После выключения УШМ, конденсатор С2 разряжается сопротивлением резистора R1. При номинале 68 кОм время разряда составляет 3 секунды. После чего устройство плавного пуска готово к новому циклу запуска болгарки.
При небольшой доработке, схему можно модернизировать до регулятора оборотов двигателя. Для этого резистор R1 заменяется на переменный. Регулируя сопротивление, мы контролируем мощность двигателя, меняя его обороты.

Таким образом, в одном корпусе можно выполнить регулятор оборотов двигателя и устройство плавного пуска электроинструмента.

Остальные детали схемы работают следующим образом:

  • Резистор R2 контролирует величину силы тока, протекающую через управляющий вход симистора VS1;
  • Конденсаторы С1 и С2 являются компонентами управления микросхемой КР118ПМ1, используемыми в типовой схеме включения.

Для простоты и компактности монтажа, резисторы и конденсаторы припаиваются прямо к ножкам микросхемы.

Симистор VS1 может быть любым, со следующими характеристиками: максимальное напряжение до 400 вольт, минимальный пропускной ток 25 ампер. Величина тока зависит от мощности угловой шлифовальной машины.

По причине плавного пуска болгарки, ток не будет превышать номинального рабочего значения для выбранного электроинструмента. Для экстренных случаев, например, заклинивания диска УШМ – необходим запас по току. Поэтому значение номинальной величины в амперах следует увеличить вдвое.

Номиналы радиодеталей, использованных в предлагаемой электросхеме – испытаны на УШМ мощностью 2 кВт. Запас по мощности имеется до 5 кВт, это связано с особенностью работы микросхемы КР118ПМ1.
Схема рабочая, многократно исполненная домашними мастерами.

На чтение 10 мин. Опубликовано 21.11.2018

Владельцы ручного электроинструмента, как любители так и профессионалы, часто сталкиваются с его поломками. Не всегда это происходит по вине пользователя. Есть особенности, из-за которых это происходит вне зависимости от внешних факторов. Это зависит от технического совершенства изделия, его цены и области применения. Значительной части неисправностей можно избежать даже при использовании недорогих электроинструментов, если выполнить их несложную доработку, например, сделать плавный пуск.

Особенности и срок службы

В ручных электроинструментах, таких как: болгарка(ушм), циркулярная пила, шуруповерт, дрель – используют коллекторные двигатели с последовательным возбуждением.

Они могут работать на постоянном и на переменном токе.

Для их запитки в большинстве случаев используется обычная электросеть 230 В 50 Гц. Раньше для профессионального инструмента использовалась сеть 380 В. Теперь, с ростом мощности потребителей в однофазных сетях (офисы и жилой сектор), появились и профессиональные электроинструменты на 220 В.

Коллекторные двигатели имеют большой крутящий и пусковой моменты, компактны, легко изготавливаются на повышенное напряжение. Крутящий момент здесь является решающим. При невысокой массе машины он как раз подходит для ручного электроинструмента. Но у таких электромоторов имеются недостатки и слабые места. Одно из таких слабых мест – щеточный узел.

Щетки из прессованного графита с наполнителями трутся о медные пластины коллектора и подвергаются механическому износу и электроэрозии. Это приводит к увеличению искрения и повышает пожарную и взрывоопасность электроинструмента. Попадание минеральной пыли внутрь ускоряет износ. Хотя вентиляторы, предусмотренные конструкцией, выдувают воздух наружу, пыль и цемент могут легко попадать внутрь. Во время простоя, если инструмент неудачно положили, пыль легко попадает внутрь. На практике это постоянное явление.


Щетки электродвигателя из прессованного графита

Еще один недостаток электроинструмента – частые поломки редуктора. Это происходит как раз из-за большого пускового момента. Достоинство оборачивается недостатком. С поломкой редуктора приходится менять инструмент, ремонту они, обычно, не подлежат. К сожалению, промышленность, в стремлении снизить себестоимость продукции делает это за счет качества. Хочешь пользоваться хорошим электроинструментом – плати немалые деньги.

С последним недостатком как раз можно эффективно бороться плавным пуском. Многие производители делают это, но не всегда уделяют этому достаточно внимания. Хорошие регуляторы оборотов есть не у всех инструментов.

Плавный пуск – для чего это нужно

Для снижения непомерной нагрузки на механику электроинструмента при пуске, могут быть приняты меры со стороны электропитания. Вместо подачи на электродвигатель полного напряжения от источника (электросети), можно подавать пониженное напряжение, с помощью плавного пуска. Но где его взять? Речь идет о массовом применении. В отдельных случаях специалисты и умельцы могли решать эту задачу, но большинству рядовых потребителей это было недоступно.

Существует три способа ограничить пусковой момент электроинструмента и добиться плавного старта:

  1. Применение реостатов;
  2. Применение трансформаторов;
  3. Применение полупроводниковых ключей.

Первый способ применялся еще очень давно, но он не экономичен и неудобен.

Его можно применять и на постоянном, и на переменном токе.

Значительная часть мощности теряется на нагрев сопротивления реостата. Если задача ограничивается только плавным пуском, то это вполне терпимо. Если таким способом регулировать рабочую скорость электродвигателя, то это лишний нагрев окружающий среды и расход электроэнергии. В любом случае устройство оказывается громоздким.

Второй способ намного лучше и экономичнее. Подходит только для переменного тока. Он также может повысить электробезопасность при работе с электроинструментом. Недостаток в том, что классические трансформаторы теперь очень недешевы. Даже при самостоятельном изготовлении, так как в них уходит много дорогой меди. Устройство получается также достаточно большим и тяжелым.

Трансформатор

Третий способ плавного пуска самый современный и дешевый. Он опирается на массовое применение полупроводников. В свое время, в исследования и наладку промышленного производства полупроводниковых приборов были вложены огромные средства. Но дешевизна материалов, из которых их производят, и массовость выпуска уже успели все окупить. Благодаря невысокой себестоимости такие приборы доступны всем.

Главная особенность полупроводниковых ключей – нет механических контактов и работают они с огромной скоростью (частотой переключения). Переключаемые ими токи могут достигать больших величин, при больших напряжениях в отключенном состоянии. При этом, такие приборы практически не греются и не потребляют лишней энергии, как реостаты и отлично подходят для современных электроинструментов.

Виды полупроводниковых ключей

Тиристоры и симисторы

Сопротивление разомкнутого ключа достигает миллионов Ом, ток через него практически не протекает.

Сопротивление замкнутого ключа лежит в пределах единиц и десятых долей Ома.

Хотя при этом может протекать значительный ток, на ключе падает слишком малое напряжение, чтобы на нем выделялось, по закону Джоуля-Ленца, большое тепло. В обеих случаях он остается практически холодным.

Это относится к любому из типов силовых ключей, каковых существует три:

  • Тиристоры и симисторы;
  • Полевые транзисторы MOSFET;
  • Транзисторы IGBT.

Исторически первыми появились тиристоры. С их помощью регулировали мощность в цепях переменного тока, управляя фазой отпирания прибора.


С помощью регулировки фазы управляющего напряжения (длительность t1) можно влиять на момент отпирания симистора в каждом полупериоде (t3) и таким образом, на долю энергии, попадающей в нагрузку и соответственно на электродвигатель.

С появлением мощных полевых транзисторов с изолированным МОП-затвором (металл-окисел-полупроводник, или на английском Metal-Oxide-Semiconductor Field Effect Transistor) током в цепи стали управлять, изменяя ширину открывающих импульсов. Этот метод очень эффективен в цепях с постоянным током, для чего его сначала выпрямляют, и применяется в сварочных инверторах, частотных преобразователях и т.д.

Для наиболее мощных электроинструментов применяют IGBT – биполярные транзисторы с изолированным затвором. Это комбинация полевого транзистора с биполярным.

Для регулирования электродвигателя в настоящее время применяют уже устоявшееся, давно применяемое решение на симисторах. Более продвинутые решения пока не очень распространены.

Как изготовить плавный пуск самостоятельно

Благодаря простоте схемы устройство плавного пуска электродвигателя на симисторе собрать несложно. Оно изготавливается из доступных деталей. Лучше всего делать его на печатной плате, так ничего не будет болтаться и замыкать. Симистор нужно закрепить на теплоотводящем радиаторе, изготовленном из алюминия. Лучше, если это будет заводской радиатор, рассчитанный на мощность 10-30 Вт. Тогда он подойдет для электроинструмента мощностью 1000-1200 Вт.

Расчет радиатора очень просто подсчитать по току. На симисторе падает около 1.5-2 вольт напряжения, когда он открыт. Ток получаем делением мощности на сетевое напряжение. Например, электроинструмент с номинальной мощностью 1200 Вт: 1200/220 = 5.45 ампер. Умножим на 2, получаем 11 Вт.

Обычно в продажном электроинструменте схема ограничения мощности упрятана где-то в рукоятке или корпусе болгарки или дрели. Там нет возможности разместить нормальный радиатор. При частом пуске она перегревается и свои функции не выполняет. Только хороший профессиональный электроинструмент имеет нормальное устройство для ограничения пускового момента и регулировки оборотов.

ПРИМЕЧАНИЕ : Модуль плавного пуска для электроинструмента лучше всего изготавливать в коробке с розеткой. Не стоит брать слишком маленькие розеточные коробки. Там сложно разместить нормальный радиатор для симистора. Без радиатора от устройства не будет практической пользы! При сборке радиатора с прибором необходимо обеспечить чистоту сопрягаемых поверхностей и тонкий слой теплопроводящей пасты (КТП-8 или импортный аналог).

Радиатор нужно закрепить на той же плате, на которой собраны остальные детали. Плата помещается в коробку подходящих размеров и достаточно прочную. Такие коробки можно купить в электротоварах или изготовить из листового пластика. Может подойти чистая пустая банка из-под клея, краски с завинчивающейся или плотно закрывающейся крышкой. Она должна быть прочной и небьющейся.

Розетка, вмонтированная в устройство, должна быть рассчитана на номинальный ток используемого электродвигателя. Аналогичная история и с сетевым шнуром.

ВАЖНО! Если электроинструмент снабжен регулятором оборотов, его ручка должна быть надежно изолирована. Устройство находится под напряжением сети и может оказаться источником поражения током в случае плохой изоляции.

Печатную плату после монтажа полезно покрыть нитролаком для защиты от влаги. Принципиальная схема и разбор ее работы в следующем разделе.

Плавный пуск на микросхеме КР1182ПМ1

Это микросхема для электроинструментов российского производства, которая выпускается ЗАО “НТЦ СИТ” (г. Брянск). Ее можно приобрести в розницу во многих интернет-магазинах. Также новое название К1182МП1Р.

Микросхема может использоваться без внешнего симистора при работе электродвигателя на нагрузку до 150 Вт. Это слишком мало для электроинструмента, но можно задействовать более мощный симистор, что увеличит мощность регулирования до 1-1.5 кВт. Схема с ее использованием показана ниже:


Внутри чипа находится усилитель управляющего сигнала. Этот сигнал формируется на выводах 3 и 6 микросхемы. Фаза отпирания симистора пропорциональна напряжению между выводами 3 и 6, которое может изменяться в пределах от 0 до 6 В. При нуле нагрузка отключена. При включении конденсатор фактически накоротко замыкает управляющую цепь. Но он довольно быстро заряжается и это формирует плавность разгона.

Резистор R1 позволяет быстрее разряжаться конденсатору C1 для уменьшения пауз между включениями. При полном напряжении нагрузка работает с мощностью, близкой к номинальной. Это напряжение создается самой микросхемой, а внешняя цепь только “закорачивает” его с целью повлиять на фазу отключения симистора в каждом полупериоде сетевого напряжения.

Выключатель S1 может быть применен вместо выключателя, работающего в разрыве сетевой цепи. Только он работает наоборот, при размыкании электродвигатель запускается, а при замыкании отключается. Ток в цепи этого выключателя очень мал и можно использовать любой микровыключатель. Тем не менее, должен быть способ быстро отключить электроинструмент в любом случае! То есть, без аварийного сетевого выключателя не обойтись.

Использование переменного резистора на месте R1 позволит более-менее плавно регулировать обороты электродвигателя. Такая функция, дополнительно к плавному пуску, может быть очень полезной при работе с различными материалами, требующими своей скорости обработки.

Обычно время плавного пуска инструмента можно ограничить в пределах 0.3 – 0.5 сек. Это обеспечивает значительное повышение срока службы устройства. Если электроинструмент мощный и оборотистый, его может неожиданно вырвать из рук работника со всеми неприятными последствиями. В таких случаях нужен еще более плавный пуск. Выбрать подходящую задержку для разгона можно с помощью графика, показанного ниже:


Эти данные были получены в программе ngspice на основе характеристик, взятых из документации производителя. Кроме того, они были проверены на практике, с угловой шлифовальной машиной 1500 Вт и показали хорошее совпадение.

Симистор VS1 можно брать типа BT139-600 (Philips), ТС106-10-6 (Россия, СЗТП), BTB10-600BWRG (ST Microelectronics) или другой аналогичный. Конденсаторы типа К50-35 на рабочее напряжение 50 В, емкостью 1 мФ (C2,3) и 5-100 мФ для C1. Резистор R2 типа МЛТ-0.5. Также в схеме желательно использовать предохранитель с номинальным током, который на 15-20% превышает номинальный ток предполагаемой нагрузки.

Пример установки плавного пуска электродвигателя на болгарку:

Встроенный, на основе KRRQD-12A (KRRQD-20A)

Автор данного видео приводит интересный пример как можно сделать встроенный плавный пуск электродвигателя с помощью универсального приспособления-удлинителя KRRQD-12A (KRRQD-20A), практически для любого электроинструмента, до 12А (20А) на нагрузке. С максимальной подключаемой мощностью инструмента до 2500 Вт(4400 Вт).

Другие способы

Среди прочих способов плавного пуска для электроинструмента можно отметить использование трансформаторов. Например, будет довольно универсальным ЛАТР на 1-1.5 кВт. Хоть это и довольно тяжелый прибор, он может выручать, если находится под рукой, тогда не придется собирать другое устройство.

Иногда в качестве “холодного” сопротивления в цепи переменного тока используют параллельные наборы конденсаторов, используя их реактивное сопротивление на частоте 50 Гц:

Учитывая большое рабочее напряжение конденсаторов и их емкость, получится слишком большая батарея. Такое решение иногда применялось раньше, но теперь слишком устарело.

Для ограничения мощности в нагрузке электродвигателя может быть использован мощный диод, с обратным напряжением не меньше 250 В. Он “срезает” один полупериод сетевого напряжения, но это создает помехи и неравномерность крутящего момента. Оба последних способа: с конденсаторами и диодом требуют переключателей, шунтирующих цепь. В случае конденсаторов потребуются еще и гасящие резисторы, ограничивающие ток короткого замыкания емкостей.

В общем, из всех способов плавного пуска электроинструмента, самым недорогим, надежным и удобным нужно признать фазовую регулировку с помощью микросхемы К1182МП1Р.

Недостатком небольших дешевых болгарок является отсутствие плавного пуска и регулировки оборотов. Каждый, кто включал мощный электроприбор в сеть, замечал как в этот момент падает яркость сетевого освещения. Это происходит из-за того, что мощные электроприборы в момент запуска потребляют огромный ток, соответственно, проседает напряжение в сети. Сам инструмент может выйти из строя, особенно китайский с ненадежными обмотками.

Система мягкого пуска защитит и сеть, и инструмент. Также не будет сильной отдачи (толчка) в момент включения. А регулятор оборотов позволит долго работать без перегрузки инструмента.

Представленная схема срисована с промышленного образца, устанавливаемая на дорогие приборы. Ее можно использовать не только для болгарки, но и для дрели, фрезерного станка и др., где стоит коллекторный двигатель. Для асинхронных двигателей схема не подойдет, там требуется частотный преобразователь.

Сначала нарисовал печатную плату для системы плавного пуска, без компонентов для регулировки оборотов. Это сделано специально, т.к. в любом случае регулятор надо выводить проводами. Имея схему каждый сам разберется что куда подключить.

В схеме регулирующим элементом является сдвоенный операционный усилитель LM358, через транзистор VD1 управляющий силовым симистором BTA20-600. Я не достал его в магазине и поставил BTA28 (более мощный). Для инструмента до 1кВт подойдет любой симистор с напряжением более 600В и током 10-12А. Т.к. схема имеет мягкий старт, то пусковые токи не спалят такой симистор. В ходе работы симистор нагревается и его следует установить на радиатор.


Известно явление самоиндукции, которое наблюдается при размыкании цепи с индуктивной нагрузкой. В нашей схеме цепь R1-C1 гасит самоиндукцию при выключении болгарки и защищает симистор от пробоя. R1 от 47 до 68 Ом, мощностью 1-2Вт. Конденсатор пленочный на 400В.

Резистор R2 обеспечивает ограничение тока для низковольтной части цепи управления. Сама эта часть является и нагрузкой, и в какой-то мере, стабилизирующим звеном. Благодаря этому после резистора можно не стабилизировать питание. Хотя есть вариант такой же схемы с дополнительным стабилитроном. Я его не поставил, т.к. напряжение питания микросхемы, итак, в пределах нормы.


Возможные замены маломощных транзисторов указаны под схемой.

Подстройку регулятора делают с помощью многооборотного резистора R14, а основную регулировку резистором R5. Схема не дает регулировку мощности от 0, а только от 30 до 100%. Если же нужен более простой мощный регулятор от 0, то можно собрать вариант проверенный годами. Правда для болгарки получение минимальной мощности бессмысленно.



Проверяем работоспособность схемы подключив лампочку на 220В мощностью 40-60Вт. Если яркость регулируется, то отключив от сети проверяем на ощупь симистор на тепловыделение. Он должен оставаться холодным. Далее подключаем плату к болгарке и проверяем плавность пуска и регулировку оборотов без нагрузки. Если все в порядке переходим к тестированию под нагрузкой.


Так дешевая болгарка превратилась в инструмент среднего уровня.

Компоненты для сборки

  • LM358 можно купить
  • S9014 можно купить

Плавный пуск получил широкое применение в безопасном запуске электродвигателей. Во время запуска двигателя происходит превышение номинального тока (Iн) в 7 раз. В результате этого процесса происходит уменьшение эксплуатационного периода мотора, а именно обмоток статора и значительная нагрузка на подшипники. Именно из-за этой причины и рекомендуется сделать плавный пуск для электроинструмента своими руками, где он не предусмотрен.

Общие сведения

Статор электродвигателя представляет собой катушку индуктивности, следовательно, существуют сопротивления с активной и реактивной составляющей.

При протекании электрического тока через радиоэлементы , имеющие сопротивление с активной составляющей, происходят потери, связанные с преобразованием части мощности в тепловой вид энергии. Например, резистор и обмотки статора электродвигателя обладают сопротивлением с активной составляющей. Вычислить активное сопротивление не составляет труда, так как происходит совпадение фаз тока (I) и напряжения (U). Используя закон Ома для участка цепи, можно рассчитать активное сопротивление: R = U/I. Оно зависит от материала, площади поперечного сечения, длины и его температуры.

Если ток проходит через реактивный тип элементов (с емкостными и индуктивными характеристиками), то, в этом случае, появляется реактивное R. Катушка индуктивности, не имеющая практически активного сопротивления (при расчетах не учитывается R ее обмоток). Этот вид R создается благодаря Электродвижущей силе (ЭДС) самоиндукции, которая прямо пропорционально зависит от индуктивности и частоты I, проходящего через ее витки: Xl = wL, где w — угловая частота переменного тока (w = 2*Пи*f, причем f — частота тока сети) и L — индуктивность (L = n * n / Rm, n — число витков и Rm - магнитное сопротивление).

При включении электродвигателя пусковой ток в 7 раз больше номинального (ток, потребляемый при работе инструмента) и происходит нагрев обмоток статора. Если статорная катушка является старой, то может произойти межвитковое КЗ, которое повлечет выход электроинструмента из строя. Для этого нужно применить устройство плавного пуска электроинструмента.

Одним из методов снижения пускового тока (Iп) является переключение обмоток. Для его осуществления необходимы 2 типа реле (времени и нагрузки) и наличие трех контакторов.

Пуск электромотора с обмотками, соединенными по типу «звезда» возможен только при 2-х не одновременно замкнутых контакторах. Через определенный интервал времени, который задает реле времени, один из контакторов отключается и включается еще один, не задействованный ранее. Благодаря такому чередованию включения обмоток и происходит снижение пускового тока. Этот способ обладает существенным недостатком, так как при одновременно замыкании двух контакторов возникает ток КЗ. Однако при использовании этого способа обмотки продолжают нагреваться.

Еще одним способом снижения пускового тока является частотное регулирование запуска электродвигателя. Принципом такого подхода является частотное изменение питающего U. Основной элемент этого вида устройств плавного пуска является частотный преобразователь, состоящий из следующих элементов:

  1. Выпрямитель.
  2. Промежуточная цепь.
  3. Инвертор.
  4. Электронная схема управления.

Выпрямитель изготавливается из мощных диодов или тиристоров , выполняющий роль преобразователя U питания сети в постоянный пульсирующий ток. Промежуточная цепь сглаживает пульсирующий постоянный ток на выходе выпрямителя, которая собирается на конденсаторах большой емкости. Инвертор необходим для непосредственного преобразования сигнала на выходе промежуточной цепи в сигнал амплитуды и частоты переменной составляющей. Электронная схема управления нужна для генерации сигналов, необходимых для управления выпрямителем, инвертором.

Принцип действия

Во время пуска электродвигателя коллекторного типа происходит значительное кратковременное увеличение тока потребления, которое и служит причиной преждевременного выхода из строя электроинструмента и сдачей его в ремонт. Происходит износ электрических частей (превышение тока в 7 раз) и механических (резкий запуск). Для организации «мягкого» пуска следует применять устройства плавного пуска (далее УПП). Эти устройства должны соответствовать основным требованиям:

Наиболее широкое распространение получили симисторные УПП, принципом действия которых является плавное регулирование U при помощи регулировки угла открытия перехода симистора. Симистор нужно подключить напрямую к обмоткам двигателя и это позволяет уменьшить пусковой ток от 2 до 5 раз (зависит от симистора и схемы управления). К основным недостаткам симисторных УПП являются следующие:

  1. Сложные схемы.
  2. Перегрев обмоток при длительном запуске.
  3. Проблемы с запуском двигателя (приводит к значительному нагреву статорных обмоток).

Схемы усложняются при использовании мощных двигателей, однако, при небольших нагрузках и холостом ходе возможно использование простых схем.

УПП с регуляторами без обратной связи (по 1 или 3 фазам) получили широкое распространение. В моделях этого типа появляется возможность предварительного выставления времени пуска и величины U перед пуском двигателя. Однако, в этом случае невозможно регулировать величину вращающего момента при нагрузке. С этой моделью применяется специальное устройство для снижения пускового тока, защиты от пропадания и перекоса фаз, а также от перегрузок. Заводские модели имеют функцию слежения за состоянием электромотора.

Простейшие схемы однофазного регулирования исполняются на одном симисторе и используются для инструмента с мощностью до 12 кВт. Существуют более сложные схемы, позволяющие производить регулировку параметров питания двигателя мощностью до 260 кВт. При выборе УПП заводского производства необходимо учесть такие параметры: мощность, возможные режимы работы, равенство допустимы токов и количество запусков в определенный промежуток времени.

Применение в болгарке

Во время запуска угловой шлифовальной машинки (УШМ) появляются высокие нагрузки динамического характера на детали инструмента.

Дорогие модели снабжены УПП, но не обыкновенные разновидности, например, УШМ фирмы «Интерскол». Инерционный рывок способен вырвать из рук УШМ, при этом происходит угроза жизни и здоровью. Кроме того, при пуске электродвигателя инструмента происходит перегрузка по току и в результате этого - износ щеток и значительный нагрев статорных обмоток, изнашивается редуктор и возможно разрушение режущего диска, который может треснуть в любой момент и причинить вред здоровью, а может даже и жизни. Инструмент нужно обезопасить и для этого следует сделать болгарку с регулировкой оборотов и плавным пуском своими руками.

Самодельные варианты

Существует множество схем модернизации электроинструмента при помощи УПП. Среди всех разновидностей широкое применение получили устройства на симисторах. Симистор - полупроводниковый элемент, позволяющий плавно регулировать параметры питания. Существуют простые и сложные схемы, которые отличаются между собой вариантами исполнения, а также поддерживаемой мощностью, подключаемого электроинструмента. В конструктивном исполнении бывают внутренние, позволяющие встраиваться внутрь корпуса, и внешние, изготавливаемые в виде отдельного модуля, выполняющего роль ограничителя оборотов и пускового тока при непосредственном пуске УШМ.

Простейшая схема

УПП с регулированием оборотов на тиристоре КУ 202 получил широкое применение благодаря очень простой схеме исполнения (схема 1). Его подключение не требует особых навыков. Радиоэлементы для него достать очень просто. Состоит эта модель регулятора из диодного моста, переменного резистора (выполняет роль регулятора U) и схемы настройки тиристора (подача U на управляющий выход номиналом 6,3 вольта) отечественного производителя.

Схема 1. Электросхема внутреннего блока с регулировкой оборотов и плавным пуском (схема электрическая принципиальная)

Благодаря размерам и количеству деталей регулятор этого типа можно встроить в корпус электроинструмента. Кроме того, следует вывести ручку переменного резистора и сам регулятор оборотов можно доработать, встроив кнопку перед диодным мостом.

Основной принцип работы заключается в регулировке оборотов электродвигателя инструмента благодаря ограничению мощности в ручном режиме. Эта схема позволяет использовать электроинструмент мощностью до 1,5 кВт. Для увеличения этого показателя необходимо заменить тиристор на более мощный (информацию об этом можно найти в интернете или справочнике). Кроме того, нужно учесть и тот факт, что схема управления тиристором будет отличаться от исходной. КУ 202 является отличным тиристором, но его существенный недостаток состоит в его настройке (подборка деталей для схемы управления). Для осуществления плавного пуска в автоматическом режиме применяется схема 2 (УПП на микросхеме).

Плавный пуск на микросхеме

Оптимальным вариантом для изготовления УПП является схема УПП на одном симисторе и микросхеме, которая управляет плавным открытием перехода p-n типа. Питается устройство от сети 220 В и ее несложно собрать самому. Очень простая и универсальная схема плавного пуска электродвигателя позволяет также и регулировать обороты (схема 2). Симистор возможно заменить аналогичным или с характеристиками, превышающими исходные, согласно справочнику радиоэлементов полупроводникового типа.

Схема 2. Схема плавного пуска электроинструмента

Устройство реализуется на основе микросхемы КР118ПМ1 и симисторе. Благодаря универсальности устройства его можно использовать для любого инструмента. Он не требует настройки и устанавливается в разрыв кабеля питания.

При пуске электродвигателя происходит подача U на КР118ПМ1 и плавный рост заряда конденсатора С2. Тиристор открывается постепенно с задержкой, зависящей от емкости управляющего конденсатора С2. При емкости С2 = 47 мкФ происходит задержка при запуске около 2 секунд. Она зависит прямо пропорционально от емкости конденсатора (при большей емкости время запуска увеличивается). При отключении УШМ конденсатор С2 разряжается при помощи резистора R2, сопротивление которого равно 68 к, а время разрядки составляет около 4 секунд.

Для регулирования оборотов нужно заменить R1 на резистор переменного типа. При изменении параметра переменного резистора происходит изменение мощности электромотора. R2 изменяет величину тока, протекающего через вход симистора. Симистор нуждается в охлаждении и, следовательно, в корпус модуля можно встроить вентилятор.

Основной функцией конденсаторов C1 и C3 является защита и управление микросхемой. Симистор следует подбирать, руководствуясь следующими характеристиками: прямое U должно составлять 400..500 В и прямой ток должен быть не менее 25 А. При таких номиналах радиоэлементов к УПП возможно подключать инструмент с мощностью от 2 кВт до 5 кВт.

Таким образом, для запуска электродвигателей различного инструмента необходимо использовать УПП заводского изготовления или самодельные. УПП применяются для увеличения срока эксплуатации инструмента. При запуске двигателя происходит резкое увеличение тока потребления в 7 раз. Из-за этого возможно подгорание статорных обмоток и износ механической части. УПП позволяют значительно снизить пусковой ток. При изготовлении УПП самостоятельно нужно соблюдать правила безопасности при работе с электричеством.

Много какой электрический инструмент, особенно прошлых годов выпуска, не оборудован устройством плавного запуска. Такие инструменты запускаются мощным рывком, в результате которого происходит повышенный износ подшипников, шестерён и всех остальных движущихся частей. В лаковых изоляционных покрытиях появляются трещины, которые имеют прямое отношение к преждевременному выходу инструмента из строя.

Чтобы исключить это негативное явление существует не очень сложная схема на интегральном регуляторе мощности, который был разработан ещё в Советском Союзе, но до сих пор его не сложно купить в интернете. Цена от 40 рублей и выше. Называется он КР1182ПМ1. Работает хорошо в разных регулирующих устройствах. Но мы будем собирать систему плавного пуска.

Схема устройства плавного пуска

Теперь рассмотрим саму схему.


Как видите компонентов не очень много и они не дорогие.

Понадобится

  • Микросхема – КР1182ПМ1.
  • R1 – 470 Ом. R2 – 68 килоом.
  • C1 и C2 – 1 микрофарад - 10 вольт.
  • C3 – 47 микрофарад – 10 вольт.
Макетная плата для монтажа компонентов схемы «чтобы не заморачиваться с изготовлением печатной платы».
Мощность устройства зависит от марки симистора, который вы поставите.
Например, среднее значение тока в открытом состоянии у разных симисторов:
  • BT139-600 - 16 ампер,
  • BT138-800 - 12 ампер,
  • BTA41-600 - 41 ампер.

Сборка устройства

Можно поставить и любые другие, какие у вас есть и которые вам подходят по мощности, но нужно учитывать, что чем мощнее симистор, тем меньше он будет греться, а значит, дольше будет работать. В зависимости от нагрузки нужно использовать и радиатор охлаждения для симистора.
Я поставил BTA41-600, для него можно радиатор совсем не ставить, он достаточно мощный и при повторно-кратковременной работе греться не будет, при нагрузке до двух киловатт. Более мощного инструмента у меня просто нет. Если планируете подключать более мощную нагрузку, то задумайтесь об охлаждении.
Соберём детали для монтажа устройства.


Ещё нам потребуется розетка «закрытая» и кабель питания с вилкой.


Макетную плату хорошо подгонять по размерам при помощи больших ножниц. Режется легко, просто и аккуратно.


Размещаем компоненты на макетной плате. Для микросхемы лучше впаять специальное гнездо, стоит копейки, но очень облегчает работу. Нет риска, что перегреете ножки микросхемы, не нужно бояться статического электричества, да и если сгорит микросхема, её заменить можно за пару секунд. Достаточно вынуть сгоревшую и вставить целую.


Детали сразу запаиваем.


Размещаем на плате новые детали, сверяясь со схемой.


Аккуратно припаиваем.


Для симистора гнёзда нужно слегка рассверлить.


И так по порядку.


Вставляем и припаиваем перемычку и другие детали.


Паяем.


Проверяем соответствие со схемой и вставляем в гнездо микросхему, не забывая о ключе.


Готовую схему вставляем в розетку.


Подключаем питание к розетке и схеме.


Смотрите пожалуйста видео испытания этого устройства. Наглядно показано изменение поведения устройства при запуске.
Удачи вам в ваших делах и заботах.
 
Статьи по теме:
Как разблокировать телефон
Как разблокировать от оператора ваш Мегафон Login 2 1. Вставляете сим-карту другого сотового оператора в телефон. 2. Включаете Мегафон Login 2 (Megafon Login 2 MS3A) . 3. Должно появится окно для ввода кода разблокировки . 4. Вводите код: 67587048 5. Теп
Asus ZenFone Max ZC550KL — Советы, рекомендации, часто задаваемые вопросы и полезные параметры
Как вставить SIM-карту на свой Asus ZenFone Max? Asus ZenFone Max — это смартфон с двумя SIM-картами и поддерживает соединение 2G / 3G / 4G. SIM-карта, поддерживаемая устройством, является Micro SIM-картой и может быть видна после снятия задней крышки тел
Что такое расширение файла CDR?
CDR-формат — это файл, который был создан в программе Corel DRAW, содержащей растровое или векторное изображение. Компания Corel использует этот формат в собственных продуктах, поэтому его можно открыть также другим программным обеспечением данной компани
Multisim 17 где находится библиотека элементов
Компоненты и библиотеки элементов Multisim 11 Контрольно-измерительные и индикаторные приборы В Multisim имеются измерительные приборы, каждый из которых можно использовать в схеме только один раз. Эти приборы рас­положены в библиотеке контрольно-из