Системный подход в моделировании. Основные определения Состояние в системе в разных

Наименование параметра Значение
Тема статьи: Состояние системы
Рубрика (тематическая категория) Образование

Определœение 1.6 Состоянием системы называют совокупность параметров, которые в каждый рассматриваемый момент времени отражают наиболее существенные с определœенной точки зрения стороны поведения системы, ее функционирования.

Определœение является весьма общим. В нем подчеркивается, что выбор характеристик состояния зависит от целœей исследования. В простейших случаях состояние может оцениваться одним параметром, способным принимать два значения (включено или выключено, 0 или 1). В более сложных исследованиях приходится учитывать множество параметров, способных принимать большое число значений.

Система, состояние которой изменяется во времени под воздействием определœенных причинно-следственных связей, принято называть динамической системой, в отличие от статической системы, состояние которой во времени не изменяется.

Желаемое состояние системы достигается или поддерживается соответствующими управляющими воздействиями.

Управление

В кибернетике управление воспринимается как процесс целœенаправленного изменения состояния системы. Иногда управлением называют процесс переработки воспринятой информации в сигналы, направляющие деятельность машин и организмов. А процессы восприятия информации, ее хранения, передачи и воспроизведения относят к области связи. Существует и более широкая трактовка понятия управления, включающая всœе элементы управленческой деятельности, объединœенные единством цели, общностью решаемых задач.

Определœение 1.7 Управлением принято называть информационный процесс подготовки и сопровождения целœенаправленного воздействия на объекты и процессы реального мира.

Такая трактовка охватывает всœе вопросы, которые приходится решать управляющему органу, от сбора информации, системного анализа, выработки решений, планирования мероприятий по реализации решений и до формирования управляющих сигналов и доведения их до исполнительных органов.

Состояние системы - понятие и виды. Классификация и особенности категории "Состояние системы" 2017, 2018.

  • - Состояние системы

    Понятие внешней среды Система существует среди других материальных объектов, которые не вошли в нее. Они объединяются понятием "внешняя среда" - объекты внешней среды. Внешняя среда- это набор существующих в пространстве и во време­ни объектов (систем), которые,... .[читать подробнее] .


  • Системой тел или просто системой мы будем называть совокупность рассматриваемых тел. Примером системы может служить жидкость и находящийся в равновесии с ней пар. В частности, система может состоять из одного тела.

    Всякая система может находиться в различных состояниях, отличающихся температурой, давлением, объемом и т. д. Подобные величины, характеризующие состояние системы, называются параметрами состояния.

    Не всегда какой-либо параметр имеет определенное значение. Если, например, температура в разных точках тела неодинакова, то телу нельзя приписать определенное значение параметра Т. В этом случае состояние называется неравновесным. Если такое тело изолировать от других тел и предоставить самому себе, то температура выравняется и примет одинаковое для всех точек значение Т - тело перейдет в равновесное состояние. Это значение Т не изменяется до тех пор, пока тело не будет выведено из равновесного состояния воздействием извне.

    То же самое может иметь место и для других параметров, например для давления . Если взять газ, заключенный в цилиндрическом сосуде, закрытом плотно пригнанным поршнем, и начать быстро вдвигать поршень, то под ним образуется газовая подушка, давление в которой будет больше, чем в остальном объеме газа. Следовательно, газ в этом случае не может быть охарактеризован определенным значением давления , и состояние его будет неравновесным. Однако если прекратить перемещение поршня, то давление в разных точках объема выравняется и газ перейдет в равновесное состояние.

    Процесс перехода системы из неравновесного состояния в равновесное называется процессом релаксации или просто релаксацией. Время, затрачиваемое на такой переход, называют временем релаксации. В качестве времени релаксации принимается время, за которое первоначальное отклонение какой-либо величины от равновесного значения уменьшается в раз. Для каждого параметра системы имеется свое время релаксации. Наибольшее из этих времен играет роль времени релаксации системы.

    Итак, равновесным состоянием системы называется такое состояние, при котором все параметры системы имеют определенные значения, остающиеся при неизменных внешних условиях постоянными сколь угодно долго.

    Если по координатным осям откладывать значения каких-либо двух параметров, то любое равновесное состояние системы может быть изображено точкой на координатной плоскости (см., например, точку 1 на рис. 81.1). Неравновесное состояние не может быть изображено таким способом, потому что хотя бы один из параметров не будет иметь в неравновесном состоянии определенного значения.

    Всякий процесс, т. е. переход системы из одного состояния в другое, связан с на рушением равновесия системы. Следовательно, при протекании в системе какого-либо процесса она проходит через последовательность неравновесных состояний. Обращаясь к уже рассмотренному процессу сжатия газа в сосуде, закрытом поршнем, можно заключить, что нарушение равновесия при вдвигании поршня тем значительнее, чем быстрее производится сжатие газа. Если вдвигать поршень очень медленно, то равновесие нарушается незначительно и давление в разных точках мало отличается от некоторого среднего значения . В пределе, если сжатие газа происходит бесконечно медленно, газ в каждый момент времени будет характеризоваться определенным значением давления. Следовательно, в этом случае состояние газа в каждый момент времени является равновесным, и бесконечно медленный процесс будет состоять из последовательности равновесных состояний.

    Процесс, состоящий из непрерывной последовательности равновесных состояний, называется равновесным или квазистатическим. Из сказанного следует, что равновесным может быть только бесконечно медленный процесс.

    При достаточно медленном протекании реальные процессы могут приближаться к равновесному сколь угодно близко.

    Равновесный процесс может быть проведен в обратном направлении, причем система будет проходить через те же состояния, что и при прямом ходе, но в обратной последовательности. Поэтому равновесные процессы называют также обратимыми.

    Обратимый (т. е. равновесный) процесс может быть изображен на координатной плоскости соответствующей кривой (см. рис. 81.1). Необратимые (т. е. неравновесные) процессы мы будем условно изображать пунктирными кривыми.

    Процесс, при котором система после ряда изменений возвращается в исходное состояние, называется круговым процессом или циклом. Графически цикл изображается замкнутой кривой.

    Понятия равновесного состояния и обратимого процесса играют большую роль в термодинамике. Все количественные выводы термодинамики строго применимы только к равновесным состояниям и обратимым процессам.

    Состояние любой реальной системы, в каждый данный момент времени можно описать с помощью некоторого множества, характеризующий систему величин – параметра .

    Количество параметров, даже для относительно простой системы может быть очень большим, и поэтому практически для описания систем используется лишь наиболее существенные, характерными для нее параметрам, соответствующим конкретным целям изучения объектов. Так для исследования состояния здоровья человека с точки зрения необходимости освобождения его от работы во внимание в первую очередь принимают значения таких параметров, как температура и кровяное давление.

    Состояние некоторой экономической системы характеризуется такими параметрами, как количество и качество выпускаемой продукции, производительность труда, фонда отдачи и т.д.

    Для описания состояния и движения системы можно применять такие способы, как словесное описание, табличное или матричное описания, математические выражения и графические изображения.

    Словесное описание сводится к последовательному перечислению и характеристики параметров системы, тенденции их изменения, последовательности смены состояния системы. Словесное описание является весьма приблизительным и дает лишь общие представления о системе, кроме того, в значительной степени субъективно, т.к. отображает не только истинные характеристики системы, но и отношения к ним описывающего их человека.

    Таблицы и матрицы получили наиболее широкое распространение для количественной характеристики системы, выражаемой значениями их параметров в некоторой фиксированной моменты времени. По данным таблицы или совокупности таблиц, соответствующие различным моментам времени могут быть построены диаграммы и графики, дающие наглядное представление по динамики системы.

    Для описания движения системы и изменения её элементов применяются математические выражения , которые в свою очередь интерпретируются графиками, отображающие протекание тех или иных процессов в системе.

    Однако наиболее глубокой и адекватной является формализованная геометрическая интерпретация состояния и движения системы в так называемом пространстве состояний или фазовом пространстве.

    Пространство состояний системы

    Пространством состояния системы называется пространство, в каждой точке которого однозначно соответствует определенное состояние рассматриваемой динамической системы, а каждому процессу изменения состояния системы соответствует определенная траектория перемещения изображающей точки в пространстве.

    Для описания движений динамических систем широко используется метод основанный на используемый, так называемого, фазового пространства (n мерного эвклидова пространства), по осям которого откладываются значения всех n обобщенных координат, рассматриваемой динамической системы. При этом однозначное соответствие между состоянии системы и точками фазового пространства достигается выбором числа измерений, равного числу обобщенных координат рассматриваемой динамической системы.

    Обозначим параметрами некоторой системы символами z1, z2…zn, который можно рассматривать, как координаты вектора z, n мерного пространства. Такой вектор есть совокупность действительных чисел z=(z1,z2..zn). Параметры z1, z2…zn будут называться фазовыми координатами системы, а состояния (фазу системы) изобразим точкой z в фазовом пространстве. Размерность этого пространства определяется числом фазовых координат, то есть числом отобранных нами для описания системы, её существенных параметров.

    В том случае, когда состояния системы можно охарактеризовать только одним параметром z1 (например, расстояния от пункта отправления поезда движущегося по некоторому заданному маршруту), то фазное пространство будет одномерным и отображаться в виде участка оси z.

    Если состояние системы характеризуется 2умя параметрами z1 и z2 (например, движения автомобиля, выраженное углом относительно некоторого заданного направления и скоростью его движения), то фазовое пространство будет двухмерным .

    В тех случаях, когда состояние системы описывается 3ьомя параметрами (например, управления скорость и ускорение), оно будет изображаться точкой в трьохмерном пространстве , а траектория движения системы будет пространственно кривой в этом пространства.

    В общем случае, когда число параметров, характеризующую систему произвольно и как в большинстве сложных экономических систем значительно больше 3, геометрическая интерпретация теряет наглядность. Однако геометрическая терминология и в этих случая остается удобной для описания состояния и движения систем, в так называемом n мерном или многомерном фазовом пространстве (гипер пространстве).

    Число независимых параметров системы называют числом степеней свободы или вариантностью систем.

    В реальных условиях работы системы и её параметров (фазовые координаты), как правило, могут изменятся лишь в некоторых ограниченных приделах. Так скорость автомобиля ограничена приделами от 0 до 200 км в час, температура человека – от 35 градусов до 42 и т.д.

    Область фазового пространства за пределы, которого не может выходить изображающая точка, называют областью допустимых состояний системы . При исследования и проектирования систем всегда исходит из того, что система находится в пределах в области её допустимых состояний.

    Если изображающая точка выйдет за пределы этой области, то это грозит разрушением целостности системы, возможностью её распада на элементы, нарушением существующих связей, то есть полным прекращением её функционирование как данная система.

    Область допустимых состояний, которую можно назвать полем системы, включает в себя всевозможные фазовые траектории, то есть линии поведения систем. Совокупность фазовых траекторий называют фазовым портретом рассматриваемой динамической системы. Во всех случаях, когда параметры системы могут принимать в определенном интервале любые значения, то есть изменяется плавно изображающая точка, которая может располагаться в любой точке внутри области допустимых состояний, при этом мы имеем дело с так называемым непрерывным пространством состояний. Однако существует большое количество технических, биологических и экономических систем, в которых ряд параметров – координат могут принимать лишь дискретные значения.

    Только дискретно можно измерить количество станков в цехе, количество тех или иных органов и клеток в живом организме и т.д.

    Пространство состояний таких систем должно рассматриваться как дискретное, поэтому их точка, изображающая состояние такой системы, не может находится в любом месте, области допустимых состояний, а только в определенных фиксированных точках этой области. Изменение состояния таких систем, то есть их движения, будет интерпретироваться скачками изображающей точки из одного состояния в другое, в третье и т.д. Соответственно и траектория движения изображающей точки будет иметь при этом дискретный, прерывистый характер.

    Состояние. Понятием состояние обычно характеризуют мгновенную фотографию, «срез» системы, остановку в её развитии. Его определяют либо через входные воздействия и выходные сигналы (результаты), либо через свойства, параметры системы (например, давление, скорость, ускорение - для физических систем; производительность, себестоимость продукции, прибыль - для экономических систем).

    Таким образом, состояние - это множество существенных свойств, которыми система обладает в данный момент времени.

    Возможные состояния реальной системы образуют множество допустимых состояний системы.

    Количество состояний (мощность множества состояний) может быть конечно, счетно (количество состояний измеряется дискретно, но их число бесконечно); мощности континуум (состояния изменяются непрерывно и число их бесконечно и несчетно).

    Состояния можно описать через переменные состояния . Если переменные – дискретные, то количество состояний может быть либо конечным, либо счетным. Если переменные – аналоговые (непрерывные), тогда - мощности континуум.

    Минимальное количество переменных, через которые может быть задано состояние, называется фазовым пространством . Изменение состояния системы отображается в фазовом пространстве фазовой траекторией .

    Поведение. Если система способна переходить из одного состояния в другое (например, s 1 →s 2 →s 3 → ...), то говорят, что она обладает поведением. Этим понятием пользуются, когда неизвестны закономерности (правила) перехода из одного состояния в другое. Тогда говорят, что система обладает каким-то поведением и выясняют его характер.

    Равновесие. Способность системы в отсутствии внешних возмущающих воздействий (или при постоянных воздействиях) сохранять своё состояние сколь угодно долго. Это состояние называют состоянием равновесия.

    Устойчивость. Способность системы возвращаться в состояние равновесия после того, как она была из этого состояния выведена под влиянием внешних (а в системах с активными элементами – внутренних) возмущающих воздействий.

    Состояние равновесия, в которое система способна возвращаться, называют устойчивым состоянием равновесия.

    Развитие. Под развитием обычно понимают увеличение сложности какой-либо системы, улучшение приспособленности к внешним условиям. В результате возникает новое качество или состояние объекта.

    Целесообразно выделять особый класс развивающихся (самоорганизующихся) систем, обладающих особыми свойствами и требующих использования специальных подходов к их моделированию.

    Входы системы х i – это различные точки воздействия внешней среды на систему (рис. 1.3).

    Входами системы могут быть информация, вещество, энергия и т.д., которые подлежат преобразованию.

    Обобщённым входом (X ) называют некоторое (любое) состояние всех r входов системы, которое можно представить в виде вектора

    X = (x 1 , x 2 , x 3 , …, x k , …, x r ).

    Выходы системы y i – это различные точки воздействия системы на внешнюю среду (рис. 1.3).

    Выход системы представляет собой результат преобразования информации, вещества и энергии.

    Движение системы – это процесс последовательного изменения её состояния.

    Рассмотрим зависимости состояний системы от функций (состояний) входов системы, её состояний (переходов) и выходов.

    Состояние системы Z (t ) в любой момент времени t зависит от функции входов X (t ), а также от предшествующих её состояний в моменты (t – 1), (t – 2), …, т.е. от функций её состояний (переходов)

    Z(t) = F c , (1)

    где F c – функция состояния (переходов) системы.

    Связь между функцией входа X(t ) и функцией выхода Y(t ) системы, без учёта предыдущих состояний, можно представить в виде

    Y(t) = Fв [X (t )],

    где F в – функция выходов системы.

    Система с такой функцией выходов называется статической .

    Если же выход системы зависит не только от функций входов X(t ), но и от функций состояний (переходов) Z(t – 1), Z (t – 2), ..., то

    системы с такой функцией выходов называются динамическими (или системами с поведением).

    В зависимости от математических свойств функций входов и выходов систем различают системы дискретные и непрерывные.

    Для непрерывных систем выражения (1) и (2) выглядят как:

    (4)

    Уравнение (3) определяет состояние системы и называется уравнением состояний системы.

    Уравнение (4) определяет наблюдаемый выход системы и называется уравнением наблюдений.

    Функции F c (функция состояний системы) и F в (функция выходов) учитывают не только текущее состояние Z (t ), но и предыдущие состояния Z (t – 1), Z (t – 2), …, Z (t v ) системы.

    Предыдущие состояния являются параметром «памяти» системы. Следовательно, величина v характеризует объём (глубину) памяти системы.

    Процессы системы – это совокупность последовательных изменений состояния системы для достижения цели. К процессам системы относятся:

    – входной процесс;

    – выходной процесс;

    Наименование параметра Значение
    Тема статьи: Состояние системы
    Рубрика (тематическая категория) Образование

    Определœение 1.6 Состоянием системы называют совокупность параметров, которые в каждый рассматриваемый момент времени отражают наиболее существенные с определœенной точки зрения стороны поведения системы, ее функционирования.

    Определœение является весьма общим. В нем подчеркивается, что выбор характеристик состояния зависит от целœей исследования. В простейших случаях состояние может оцениваться одним параметром, способным принимать два значения (включено или выключено, 0 или 1). В более сложных исследованиях приходится учитывать множество параметров, способных принимать большое число значений.

    Система, состояние которой изменяется во времени под воздействием определœенных причинно-следственных связей, принято называть динамической системой, в отличие от статической системы, состояние которой во времени не изменяется.

    Желаемое состояние системы достигается или поддерживается соответствующими управляющими воздействиями.

    Управление

    В кибернетике управление воспринимается как процесс целœенаправленного изменения состояния системы. Иногда управлением называют процесс переработки воспринятой информации в сигналы, направляющие деятельность машин и организмов. А процессы восприятия информации, ее хранения, передачи и воспроизведения относят к области связи. Существует и более широкая трактовка понятия управления, включающая всœе элементы управленческой деятельности, объединœенные единством цели, общностью решаемых задач.

    Определœение 1.7 Управлением принято называть информационный процесс подготовки и сопровождения целœенаправленного воздействия на объекты и процессы реального мира.

    Такая трактовка охватывает всœе вопросы, которые приходится решать управляющему органу, от сбора информации, системного анализа, выработки решений, планирования мероприятий по реализации решений и до формирования управляющих сигналов и доведения их до исполнительных органов.

    Состояние системы - понятие и виды. Классификация и особенности категории "Состояние системы" 2017, 2018.

  • - Состояние системы

    Понятие внешней среды Система существует среди других материальных объектов, которые не вошли в нее. Они объединяются понятием "внешняя среда" - объекты внешней среды. Внешняя среда- это набор существующих в пространстве и во време­ни объектов (систем), которые,... .[читать подробнее] .


  •  
    Статьи по теме:
    TrueCrypt шифрование важных файлов
    TrueCrypt — это программная система для создания и использования шифруемого-на-лету тома (устройства хранения данных). Шифрование-на-лету означает, что данные автоматически шифруются или дешифруются прямо во время их считывания или записи, не отвлекая пол
    Какую форму имеет канал гранде
    Гранд-канал (Canal Grande) представляет собой основной транспортный канал Венеции, являющийся одновременно и так называемой «главной улицей» этого города на воде. Он пересекает в виде буквы S все пространство города, по его берегам располагаются самые кра
    Как заблокировать доступ к вконтакте
    Покажу как закрыть доступ ВКонтакте на компьютере. Закрыть доступ вы можете своей подруге или детям, чтобы они не лазили с компьютера вконтакт и не тратили время. Этот способ закроет доступ сайту вконтакте только на компьютере. Заходим в папку etc, она на
    Установка Kaspersky Internet Security Параметры и свойства установки программы
    Kaspersky Internet Security 2016 - комплексный антивирус, универсальная защита от всех интернет-угроз. Безопасные платежи - защита финансовых операций в интернете. Защита от несанкционированного подключения к веб-камере. Родительский контроль - обеспечен