Что такое матрица ноутбука и ее замена. Типы дисплеев, используемых в ноутбуках Статическая и шахматная контрастность

Отвечая на самый простой вопрос: что такое матрица в ноутбуке, можно просто сказать что это экран (монитор) который показывает картинки. В реальности это плоская панель с жидкими кристаллами внутри, которые меняют цвет под воздействием электрического тока. Мы видим изображение, сформированное этими кристаллами, через которые проходит свет от специальной лампы подсветки или светодиодной ленты, находящейся по краю матрицы.

Теоретические основы работы ЖК-дисплеев можно изучить .

TFT-матрицы в ноутбуках используется примерно те же, что и в обычных ЖК-мониторах и потому имеют те же самые особенности и характеристики за следующими исключениями:

  • если в "обычных" TFT-мониторах наиболее распространены модели с двумя или четырьмя лампами подсветки (иногда и больше), то в ноутбуках жёсткие требования по ограничению энергопотребления привели к использованию в большинстве случаев всего одной лампы подсветки, расположенной чаще всего снизу. Поэтому у ЖК-матриц для портативных ПК качество изображения обычно заметно хуже , чем у моделей для настольных мониторов сопоставимого класса.
  • шина, соединяющая выход видеокарты со входом матрицы различна в ноутбуках и ЖК-мониторах. В ноутбуках используется LDVS -шина, конкретней - одна из её разновидностей Flat Panel Display Link (FPD-Link). Опуская технические детали, на практике это приводит к некоторым ограничениям (см. ).
  • у "ноутбучных" TFT-экранов больше разнообразия в доступных разрешениях матриц, в то же время они более консервативны в использовании новейших разработок.

Типы экранов ноутбуков

Классифицировать типы матриц ноутбуков можно по их размерам (принято измерять диагональ в дюймах), разрешению (в пикселях по горизонтали и вертикали, наиболее распространённое значение 1024x768), по соотношению сторон (aspect ratio - "обычное" 4:3 и "широкоформатное" 16:10), по технологии их изготовления. Большинство производителей различных типов экранов для ноутбуков придерживаются спецификаций, разрабатываемых Standart Panels Working Group . Согласно текущей спецификации производятся следующие (по размерам, соотношению сторон и разрешению) матрицы:

Диагональ
матрицы
Разрешение
(букв. обознач.)
Разрешение
(в пикселях)
Соотношение
сторон
Расстояние
между
пикселями
Пикселей
на дюйм
15,0" QXGA 2048 x 1536 4:3 0.148 172
12,1"W WSXGA+ 1680 x 1050 16:10 0.155 164
14,1"W WUXGA 1920 x 1200 16:10 0.158 161
15,4"W WUXGA 1920 x 1200 16:10 0.173 147
12,1" SXGA+ 1400 x 1050 4:3 0.176 144
14,1" UXGA 1600 x 1200 4:3 0.179 142
14,1"W WSXGA+ 1680 x 1050 16:10 0.180 141
12,1"W WXGA 1440 x 900 16:10 0.181 140
15,0" UXGA 1600 x 1200 4:3 0.190 134
17,0"W WUXGA 1920 x 1200 16:10 0.191 133
13,3" SXGA+ 1400 x 1050 4:3 0.193 132
15,4"W WSXGA+ 1680 x 1050 16:10 0.197 129
12,1"W WXGA 1280 x 800 16:10 0.204 125
14,1" SXGA+ 1400 x 1050 4:3 0.204 125
14.1"W WXGA 1440 x 900 16:10 0.210 121
15,0" SXGA+ 1400 x 1050 4:3 0.217 117
17,0"W WSXGA+ 1680 x 1050 16:10 0.219 116
15,4"W WXGA 1440 x 900 16:10 0.230 110
14,1"W WXGA 1280 x 800 16:10 0.237 107
12,1" XGA 1024 x 768 4:3 0.240 106
17,0"W WXGA 1440 x 900 16:10 0.255 100
15,4"W WXGA 1280 x 800 16:10 0.259 98
13,3" XGA 1024 x 768 4:3 0.264 96
14,1" XGA 1024 x 768 4:3 0.279 91
17,0"W WXGA 1280 x 800 16:10 0.287 89
15,0" XGA 1024 x 768 4:3 0.296 86

Данные в этой таблице отсортированы по значению "расстояние между пикселями", который в определённой степени характеризует "мелковатость буковок" в обычной офисной работе. Жирными цифрами выделены наиболее распространённые типы матриц, мелким шрифтом - малораспространённые. Следует заметить, что в таблице перечислены только ныне выпускаемые типы матриц; ранее производились и другие, например, с разрешением 800x600 (SVGA); также возможен выпуск и несоответствующих этой спецификации матриц - например, 1152x768 (XGA+, 15:10) или 1280x854 (WSXGA, 15:10).

Чем выше разрешение матрицы, тем меньше расстояние между соседними пикселями, тем меньше визуальные размеры элементарных элементов внешнего оформления операционной системы компьютера - иконок, названий файлов и элементов меню в графических ОС и символов в текстовых, но и тем больше информации помещается на всей площади экрана и тем более чёткими будут элементы изображения, имеющие те же линейные размеры. Однозначно утверждать, что высокое разрешение матрицы это хорошо, а более низкое плохо - нельзя, равно как и наоборот. Каждый должен подобрать оптимальный для своих глаз и привычек размер и разрешение матрицы, попробовав в работе несколько разных ноутбуков; вышеприведённая таблица позволит составить предварительное впечатление о ещё неопробованных типах матриц.

Осталось поговорить про различные технологии производства жидкокристаллических матриц. Про т.н. "пассивные" (так же известные как Dual Scan) матрицы можно только упомянуть. Они характеризовались высокой инерционностью (смазываемостью), плохой цветопередачей (а часто - и просто были чёрно-белыми) и крайне удручающими углами обзора, но встретить их сейчас можно только в очень старых портативных компьютерах эпохи "пентиума первого" и более древних. "Активные" матрицы по технологии изготовления бывают на настоящий момент четырёх основных типов :

  • TN+Film (Twisted Nematic плюс плёнка, наложенная на экран для увеличения углов обзора) - старейшая из используемых технологий; характеризуется в первую очередь небольшими реальными углами обзора и неважной цветопередачей. Самая дешёвая в производстве плюс позволяет делать "быстрые" матрицы с минимальными заявленными характеристиками переключения "белое-чёрное", что обусловливает её наибольшее распространение. В недорогих ноутбуках вероятность встретить этот тип матрицы практически равна 100%. Битые пиксели на экране выглядят как яркие точки.
  • MVA (Multidomain Vertical Alignment) разработки Fujitsu. Относительно "медленные" матрицы, но с неплохой цветопередачей и хорошими углами обзора, изумительной контрастностью. По непонятным причинам в ноутбуках применяются крайне редко, в основном в аппаратах. собственного производства Fujitsu. Битый пиксель выглядит, как черная точка.
  • PVA (Patterned Vertical Alignment) - улучшенный "аналог" MVA от Samsung"а. Пока практически не применяется в производстве ноутбучных матриц. Впрочем, есть достаточная большая вероятность появления модернизированного (в плане "ускорения" времени отклика) варианта PVA на этом рынке в самом ближайшем будущем.
  • IPS (In-Plane Switching) разработки Hitachi, иногда в модернизированных вариантах S-IPS, Dual Domain IPS, A-IPS. Практически лишены недостатков конкурентов (чуть худшая контрастность по сравнению с MVA-PVA, чуть худшее время отклика по сравнению с TN+Film, небольшой отлив чёрного в фиолетовый при взгляде под углом - практически единственные известные особенности), но, увы, обладают высокими себестоимостью производства и энергопотреблением. На матрицах IPS производятся некоторые старшие модели в линейках некоторых производителей (Asus, Dell, IBM, LG, Sharp, Sony, Toshiba).

Определить тип матрицы в конкретном ноутбуке с большей или меньшей долей вероятности можно визуально .
Следует сказать, что многие производители применяют (чаще всего - исключительно в маркетинговых целях) свои собственные "фирменные" названия технологий. Например, IBM FlexView, ASUS ACEView, LG Wide View Angle - это "законспирированные" синонимы IPS-матрицы (возможно, с какими-то вариантами). Toshiba CASV (Clear Advanced Super View), Acer CrystalBrite, ASUS Color Shine , Dell TrueLife, HP-Compaq BrightView, Fujitsu CrystalView, Sony XBrite /X-Black и др. - популярная в последнее время попытка увеличить контрастность матрицы заменой традиционного матового покрытия ЖК-панели на глянцевое с рядом доработок. Фактическое содержимое таких "фирменных" технологий как правило не афишируется подробно, что не позволяет, к сожалению, использовать их наличие или отсутствие как критерий выбора. Например, два ноутбука Sony с (вроде бы) одной и той же технологией XBrite могут иметь совсем разное качество отображения картинки. Зачастую узнать, какая именно матрица установлена в данном конкретном ноутбуке можно только по

Как известно, львиную долю стоимости любого ноутбука составляет стоимость установленной в нем матрицы. Но при покупке мобильного компьютера потенциальный покупатель чаще всего интересуется диагональю дисплея и его рабочим разрешением. Конечно, эта скупая информация способна создать некое общее представление о том, что и как будет видеть пользователь, но, на наш взгляд, процесс выбора матрицы, идеально подходящей для решения конкретных задач, заслуживает более пристального внимания.

3 вида матриц в ноутбуках: какой выбрать?

Все современные дисплей «обвешаны» немереным количеством торговых марок и технологий (Crystal, Shine, Bright, True, Ultra), запутаться в которых можно очень быстро. К тому же многие эти «лейблы» являются чисто маркетинговыми решениями, обладающими помимо декларируемых достоинств и недостатками, о которых производитель обычно не упоминает. Поэтому мы решили «разложить по полочкам» все современные технологии производства жидкокристаллических матриц, дабы было проще определиться с выбором ноутбука (где матрица является неотъемлемой частью) для выполнения определенных задач.

Немного истории

Первые упоминания о жидких кристаллах относятся к 1888 году, когда австрийский ботаник Ф.Райницер обнаружил эти удивительные структуры в ходе своих экспериментов. Однако термин «жидкий кристалл» был дан его коллегой немецким физиком О.Леманном, который попутно исследовал их электромагнитные и оптические свойства. По своей природе жидкие кристаллы представляют собой переходное состояние вещества между твердым и жидким состояниями, где сохраняется кристаллическая структура молекул и в то же время обеспечивается текучесть. Вы и сами можете это увидеть. В общем виде матрица состоит из двух листов гибкого поляризуемого материала со слоем жидкокристаллического раствора между ними. Если легко нажать на поверхность матрицы во время работы, то можно заметить, что он поддается, смещая жидкость, находящуюся внутри.

Семейства матриц: преимущества и недостатки

Семейство Преимущества Недостатки
TN (Twisted Nematic)
Модификации: STN, DSTN, TN+Film
- хорошее время отклика, от 16мс -25мс;
- самая дешевая технология.
- плохая цветопередача;
- низкая контрастность;
- черный цвет плохо передается и выглядит как темно-серый;
- битые пиксели на экране выглядят яркими точками;
- маленькие углы обзора, у технологии TN+Film - до 140°.
MVA (Multi-Domain Vertical Alignment)
Модификации: PVA, ASV
- высокие яркость и контрастность до 500:1;
- цвета отображаются лучше TN;
- неплохая передача черного цвета;
- углы обзора до 160°.
- искажается цветопередача;
- битый пиксель выглядит, как черная точка;
- время отклика примерно 25мс.
IPS (In-Plane Switching)
Модификации: Super IPS, Dual Domain IPS, A-IPS
- черный цвет выглядит черным;
- битый пиксель выглядит не ярким, а черным;
- контрастность до 300:1;
- самая лучшая цветопередача;
- углы обзора порядка 170-180°.
- самое большое время отклика, не меньше 30мс и до 50-60мс;
- большое энергопотребление;
- самая дорогая технология.

Современная же история жидкокристаллических матриц началась в 60-х годах прошлого века, когда в корпорации RCA (Radio Corporation of America) появились «прадедушки» дисплеев современных ноутбуков. Исследования Д. Фергасона, разработавшего первые образцы индикаторов на жидких кристаллах и Р.Вильямса, занимавшегося исследованиями воздействия электрического поля на нематические кристаллы и привели к рождению технологии жидкокристаллических матриц. Первым прототипом современного дисплея можно считать цифровые часы, появившиеся в 1966 году. Правда, по своей сути это был не полноценный дисплей, а матрица из восьмисегментных ЖК-индикаторов, первые дисплеи с адресацией каждой точки появились во второй половине 70-х годов.

За сорок лет своего существования жидкокристаллические матрицы прошли огромный путь, но применительно к ноутбукам вершиной их эволюции можно считать активную матрицу, изготовленную по технологии TFT (Thin Film Transistor – тонкопленочный транзистор), которая используется в подавляющем большинстве портативных компьютеров.

Три кита ЖК-технологий

Все современные матрицы для ноутбуков можно разделить на три большие группы по числу базовых технологий их изготовления. Главное отличие между ними – это способ расположения кристаллов в матрице, что непосредственно влияет на прохождение света, а соответственно, и на характеристики матрицы. Первой появилась технология TN (Twisted Nematic – скрученные нематические), которая появилась в начале 70-х годов. В такой матрице организация кристаллов напоминает скручивающуюся спираль. В чистом виде эта технология сегодня не используется, поскольку она не позволяет точно передавать цвета, да и контрастность и время отклика оставляют желать лучшего. Но самым главным минусом TN-матриц все же были углы обзора, особенно вертикальные, даже незначительное отклонение приводило к изменению цвета пикселя.

Такой сильный перепад яркости между верхом и низом
экрана возникает из-за недостаточно большого
угла обзора по вертикали

Поэтому вполне закономерным можно считать появление усовершенствованной технологии, получившей название TN+Film. Доработка достаточно проста, на матрицу наложили специальную пленку, которая и расширяет углы обзора. Полученные значения достигают 140 градусов по горизонтали (для сравнения, угол обзора обычной TN матрицы составляет всего лишь 90 градусов), по вертикали же ситуация улучшилась несильно. Если внимательно присмотреться к матрице на основе этой технологии, то можно заметить, что очень сложно найти такое положение, при котором бы наблюдалась равномерная засветка (чаще всего наблюдаются вертикальные искажения). Отклонившись от этого положения в сторону, практически сразу же можно заметить падение контрастности и искажение цветовой гаммы. Да и черный цвет на самом деле выглядит серым.

На экране ноутбука чистый белый фон, но явно видно
искажение цветопередачи при взгляде с боку

Большей четкости позволяет добиться увеличение разрешения, правда, при этом остальные параметры не меняются. Невысокое качество цветопередачи (вплоть до неестественного отображения), низкая контрастность, блеклость картинки, малые углы обзора – вот основные минусы этих матриц. Зато такие матрицы являются очень быстрыми (малое время отклика) и отличаются невысокой ценой, что и обуславливает их применение по сей день. Присмотритесь к экрану любого бюджетного ноутбука, и вы убедитесь в вышесказанном. Кстати, чаще всего дисплеи, созданные по технологии TN+Film имеют диагональ 14-15 дюймов, небольшое разрешение (обычно 1024х768 пикселей) и характеризуются яркостью 100-110 кд/м 2 (этого недостаточно для комфортной работы в солнечных условиях) и контрастностью в районе 50:1.

Что такое матрица ноутбука? Как она выглядит? Из чего состоит?

Можно смело утверждать, что матрица = экран = дисплей = ЖК (LCD) панель. Все четыре слова практически равнозначны.

Жидкокристаллическая (LCD) матрица ноутбука - основная составляющая часть экрана. Она служит для отображения информации, обрабатываемой ноутбуком, в графическом виде, в диапазоне цветов и с параметрами свечения, воспринимаемых глазом человека.

Матрица крепится при помощи нескольких болтов внутри крышки ноутбука и закрывается рамкой. Выглядит матрица ноутбука так:


Конечно же, крепеж и внешний вид матрицы зависят о её модели. [ ]

Пиксели .

Само понятие «Матрица » для экрана ноутбука употребляется в математическом контексте. Как и в математике, где в строках и столбцах матриц находятся числа, в LCD матрицах таким же образом расположены пиксели.

Пиксель – это точка на поверхности матрицы, которая может светиться любым из оттенков в формате RGB (из R ed , G reen и B lue цветов можно получить любой оттенок). У каждой такой точки есть свой адрес (номер в строке и столбце) по которому к ней можно обратиться и передать сигнал о том, какой цвет испускать. [ ]

Разрешение матрицы .

Разрешение матрицы (экрана) - есть не что иное, как количество точек (пикселей) в ней по вертикали и горизонтали.

Наверняка вы слышали такие названия как HD и FullHD? Это маркетинговые названия стандартов разрешения телевидения высокой четкости (HDTV). Эти стандарты подразумевают, что изображение или экран (к которому применяется данное понятие) состоит из определенного числа точек, т.е. пикселей.

Например, говоря о фильме в формате Full HD, мы подразумеваем, что кадры в видеофайле имеют размер 1920 точек по горизонтали и 1080 точек по вертикали т.е. 1920x1080.

Формат HD подразумевает размер 1366x768. Для матриц ноутбуков, кстати, самое распространенное разрешение (рисунок ниже).

Такие разрешения не случайны, они подобраны таким образом, чтобы соблюсти соотношение сторон (отношение ширины кадра к высоте) принятых в кинематографе. В случае с HD и Full HD соотношение сторон составляет 16 к 9 (16:9). Если вспомнить школьный курс математики, то несложно определить что 1920 относится к 1080 также как и 16 относится к 9 (тоже и с 1366x768).

Отсюда и сопутствующая маркировка форматов матриц - 16:9, 16:10 и т.д.

Еще несколько вариантов исполнения матриц с различными разрешениями, соотношениями сторон и названиями стандартов:

Прямые или квадратные матрицы, соотношения сторон у которых (4:3 или 5:3):

XGA (1024x768), SXGA (1280x1024), SXGA+ (1400x1050), UXGA (1600x1200), QXGA (2048x1536)

Широкоформатные матрицы (W - wide), соотношения сторон у которых (16:10):

WXGA (1280x768 или 1280x800), WXGA+ (1440x900), WSXGA+ (1680x1050 или 1680x945), WUXGA (1920x1200)

Матрицы высокой четкости (HD - High Definition):

HD (1366x768), HD+ (1600x900), FullHD (1920x1080)

В отличие от матриц обычных мониторов, матрицы ноутбуков, как правило, имеют одно фиксированное (рабочее) разрешение и парочку совместимых, в то время как в дисплеях мониторов ПК различные наборы разрешений достигаются за счет цифровой интерполяции, поэтому их гораздо больше.

Но давайте вернемся к устройству матрицы ноутбука . [ ]

Диагональ экрана (матрицы) .

Диагональ любого экрана измеряется дюймами. Матрицы ноутбуков не являются исключением. Самые распространенные значения диагоналей - 15.6"; 17.3"; 10.1"; 11.1"; 13.3"; 14" и др.

Диагональ экрана напрямую зависит от соотношения сторон матрицы, её разрешения (количества пикселей) и размера пикселя. , матрицы ноутбуков, в зависимости от стандарта, имеют определённое разрешение и соотношение сторон. Этими же параметрами определяется и диагональ.

Например, размеры сторон (ширина и высота) матрицы (рабочая область, а не весь корпус))равны 382.08 мм и 214.92 мм соответственно.

Размер стороны определяется размером пикселя. И если размер пикселя равен 0.2388 мм, то, имея разрешение матрицы 1600х900 мы получаем 1600 * 0.2388 мм = 382,08 мм, а также 900 * 0.2388=214.92 мм.

И, разумеется, 1600*900 и 382.08*214.92 относятся друг к другу также как и 16 относятся к 9. Т.е. матрица, о которой мы говорим сконструирована по стандарту 16: 9.

А если построить прямоугольник (или взять матрицу) с размерами 382.08*214.92 мм и измерить диагональ мы получим 17.3 дюйма (17.3").

В данном конкретном случае в расчетах были использованы характеристики матрицы модели N173FGE-L21 (1600*900) LED

Теперь мы видим каким образом матрицы классифицируются по размеру диагонали. Размер пикселя может быть другим (чем меньше - тем лучше), как может быть другим и разрешение, тогда и диагональ матрицы будет меньше или больше и всегда в рамках пропорций 16: 9 (или другой стандарт).

Вот еще один наглядный рисунок о размерах, соотношении сторон и диагонали матриц ноутбуков .



Для справки: 1 дюйм = 2,54 см [ ]

Структура матрицы.

Пиксель - не такая уж простая структура, он состоит из 3х субпикселей, каждый из которых отвечает за свой цвет: R ed , G reen и B lue соответственно.

Вот так выглядит поверхность матрицы ноутбука под микроскопом, на ней хорошо видно 3х цветные области.

Цвета от 3х областей сливаются в одну точку, которая получает оттенок в зависимости от долей RGB каждого субпикселя.

Как всё это работает?

Технологии меняются, а вместе с ними и схемы построения матриц для ноутбуков, однако общий принцип остается неизменным:

Кристаллы находятся между 2х стекол (очень прозрачных из-за отсутствия в своем составе натрия). На стекле находится 3 светофильтра, каждый из которых пропускает один из цветов RGB.

Под действием электрического тока жидкие кристаллы выстраиваются определенным образом (упорядочиваются) и начинают пропускать свет за счет поляризации. Свет поступает от лампы или светодиодов (тип матрицы CCFL и LED соответственно). Источник света находится ЗА стёклами и светофильтрами.

На светофильтрах находятся транзисторы, по одному на каждый субпиксель (т.е. по 3 на каждый цвет и пиксель), на них поддерживается напряжение для сохранения свечения и цвета пикселя.

Транзисторы очень малы. Все 3 шт. на пиксель умещаются, в среднем, в 0.2 - 0.3 мм. по высоте и ширине. Это достигается за счет применения TFT .

Т.о., современные матрицы ноутбуков состоят из:

  • Подсветки в виде лампы (CCFL ) или светодиодов (LED )
  • Вертикального и горизонтального поляризационных фильтров
  • Жидких кристаллов (обычно, это вещество - цианофенил)
  • Цветового фильтра
  • Транзисторов, для сохранения состояния пикселя (TFT-пленка)

А вот так, схематически выглядит пиксель LED-матрицы в разрезе:

Жидкокристаллическая матрица , как вы видите, весьма сложная конструкция, поэтому её ремонт чрезвычайно сложен и в большинстве случаев нецелесообразен, исключением являются матрицы с ламповой подсветкой (CCFL ), где можно произвести замену таких деталей как инвертор напряжения и источник свечения (лампу). [ ]

Замена и ремонт матрицы ноутбука

«Что же ремонтировать в матрице »? - спросите вы. Ну, например:

- Для матриц с подсветкой на лампах CCFL частным случаем ремонта является замена ламп подсветки или инвертора напряжения.

Причиной неисправности ламп CCFL ,обычно, служит износ. Со временем свечение лампы угасает, а вместе с ним сходят на нет и цвета на экране ноутбука.

Также, в зависимости от времени, подсветка становится менее равномерной или пропадает вовсе.

Инвертор часто ломается из-за переходных процессов, происходящих в нем. Дело в том, что рабочее напряжение для CCFL составляет 600-900 Вольт, пусковое напряжение - 900-1600 Вольт (в среднем, в зависимости от модели матрицы), а функцией инвертора как раз и является выдача такого напряжение для лампы подсветки. При таких напряжениях нередко происходят замыкания в цепях инвертора, что и приводит к выходу из строя всего модуля.

-Для матриц с LED подсветкой (обычно это WLED) характерна поломка драйвера управления светодиодами. Вследствие этого подсветка перестает излучать свет и матрица попросту не загорается, т.е. изображения на дисплее нет – только черный экран.

Если вам нужен - обращайтесь.

Для обоих типов матриц характерна поломка от физического воздействия. 90% наших клиентов с неработающими экранами разбили их по неосторожности.

Матрица – самая хрупка часть ноутбука , может лопнуть даже от прикосновения руки ребенка. На весь процесс замены матрицы уходит от 15 до 60 минут , в зависимости от модели ноутбука.

Замена матрицы – ремонт модульного типа, по принципу: «Подключил и работает». Матрица устанавливается в корпус экрана и подключается к видео-шлейфу.

Иногда приходится разбирать корпус ноутбука полностью, это увеличивает время ремонта, однако принцип замены тот же – «plug and play».

Что такое матрица в ноутбуке? Это жидкокристаллический экран монитора, обеспечивающий качественное изображение и естественную цветопередачу. Технология использования жидких кристаллов появилась в конце 19 века, хотя она достаточно долго не находила способа применения на практике. Однако фирма Radio Corporation of America в 1970 г разработала первый экран с жидкими кристаллами, который уже тогда получил название «матрица».

Так что такое матрица в ноутбуке: на фото видно, что она включает в себя два гибких поляризованных слоя, меж которыми располагается раствор из жидких кристаллов. Чтобы изображение на матрице было видно пользователю, за ней располагается отражающий слой и мощная подсветка. При слабом нажатии на любую точку экрана можно заметить, как раствор начинает перемещаться, и при этом на поверхности экрана возникают цветные разводы. Нельзя забывать, что матрица экрана ноутбука - хрупкий элемент, требующий очень осторожного обращения.

Различают три основных разновидности матриц:

  • TN - матрицы, главным преимуществом которых стало высокое время отклика и невысокая стоимость однако по иным показателям они оставались несовершенными. Распространенные разновидности STN, DSTN, TN+Film.
  • IPS - второе поколение матриц ноутбука, отличавшееся более совершенной цветопередачей. Однако они стоят значительно дороже и отличаются большим энергопотреблением, поэтому производителям пришлось искать промежуточный вариант. Этот тип матриц выпускается в разновидностях: Super IPS, Dual Domain IPS и некоторых других.
  • MVA - самые совершенные на сегодня матрицы ноутбуков. По качеству картинки и уровню цветопередаче они максимально приближены к матрицам второго поколения, а по энергоемкости - к матрицам TN. Они же обладают относительно невысокой стоимостью, что дополнительно обеспечило им широкое распространение.

Продемонстрируем наглядно преимущества и недостатки каждого вида матриц

Семейство

Преимущества

Недостатки

TN (Twisted Nematic)
Модификации: STN, DSTN, TN+Film

отличное время отклика, от 16мс -25мс;
недорогая технология

плохая цветопередача;
низкая контрастность;
черный цвет плохо передается и выглядит как темно-серый;
битые пиксели на экране выглядят яркими точками;
маленькие углы обзора, у технологии TN+Film - до 140°.

MVA (Multi-Domain Vertical Alignment)
Модификации: PVA, ASV

высокие яркость и контрастность до 500:1;
цвета отображаются лучше чем у матрица типа TN;
черный цвет отображается значительно лучше;
углы обзора до 160°.

искажается цветопередача;
битый пиксель выглядит, как черная точка;
время отклика примерно 25мс.

IPS (In-Plane Switching)
Модификации: Super IPS, Dual Domain IPS, A-IPS

черный цвет выглядит черным;
битый пиксель выглядит не ярким, а черным;
контрастность до 300:1;
самая лучшая цветопередача;
углы обзора порядка 170-180°.

самое большое время отклика, не меньше 30мс и до 50-60мс;
большое энергопотребление;
самая дорогая технология.

Согласно спецификации Standart Panels Working Group, матрицы ноутбуков достаточно часто классифицируют по размерам, соотношению сторон и разрешению. Ниже представлена классификация:

Диагональ
матрицы

Разрешение
(букв. обознач.)

Разрешение
(в пикселях)

Соотношение
сторон

Расстояние
между
пикселями

Пикселей
на дюйм

Данные в таблице отсортированы по колонке «расстояние между пикселями». Стоит отметить, что здесь перечислены только выпускаемые типы матриц на сегодняшний день. Например, в таблице нет матриц с разрешением 800x600 (SVGA).

Что такое инвертор матрицы ноутбука?

Это часть системы подсветки, обеспечивающая четкое и яркое изображение на экране. Подсветка состоит из ламп и преобразователя напряжения, роль которого и выполняет инвертор. Чтобы обеспечить необходимую яркость ламп, необходимо напряжение в тысячу вольт, в то время как блок питания устройства подает не более 20. Инвертор применяется для трансформации напряжения в высоковольтное, он состоит из управляющей платы и трансформатора. Его дополнительными функциями являются защита от перегрузок, регулировка яркости монитора и защита от замыканий.

Распространенные поломки матрицы ноутбука

Что делать, если сломалась матрица на ноутбуке? Наиболее распространенная причина - механические поломки. Любой сильный удар или падение ноутбука даже с небольшой высоты приводит к серьезным неисправностям матрицы, после чего ее необходимо менять. Сделать это можно только в условиях сервисного центра, самостоятельный ремонт только усугубит проблему.

Еще одна сложная проблема, требующая профессионального ремонта - поломка дешифратора, она проявляется цветными полосами на экране и другими нарушениями отображения картинки. Восстановить работу дисплея в этом случае могут только профессионалы. К менее серьезным проблемам относятся поломка инвертора и другие нарушения работы системы подсветки, обычно они не требуют полной замены матрицы.

При любых неисправностях лучшим решением станет профессиональная диагностика и замена комплектующих. В нашем интернет-магазине вы найдете все для ремонта матрицы любой модели ноутбука.

У многих из вас есть старые или сломанные ноутбуки, которые лежат без дела, но некоторые запчасти в них вполне себе рабочие, поэтому выбрасывать устройство жалко. А если вдруг захотелось сделать второй или третий дополнительный монитор для компьютера, то этот ноутбук окажется как раз кстати. Сегодня я расскажу, как сделать из рабочей матрицы ноутбука монитор, который можно будет повсеместно использовать.

Первое что нам понадобится, это рабочая матрица ноутбука. На этом этапе вы должны быть на 100% уверены, что она действительно работает, иначе выполнение следующих действий бесполезно. Итак, мой пациент — HP Pavilion dv9000 , в котором сломано одно из креплений дисплея и сгорел видеомодуль, но матрица в 17 дюймов и разрешением 1440×900 рабочая.

Аккуратно разбираем ноутбук и извлекаем дисплей, а затем и саму матрицу. Для большинства устройств в сети есть подробные инструкции по разборке. Также я извлёк динамик и веб-камеру. В итоге мы получаем примерно следующую картину.

1) Гнездо для подключения LVDS кабеля.
2) Штекер, который подключается в инвертор подсветки.

Смотрим внимательно на наклейки и находим модель матрицы. Как видим, ноутбук у меня HP , а матрица от SAMSUNG , нас интересует надпись LTN170X2-L02 , это и есть модель матрицы. То, что после знака «-» можно не учитывать при поиске, нам важна только маркировка LTN170X2 .

Если вам не нужны какие-то видеовходы, то можно без проблем найти, например, плату с одним из интересующих вас входов. Тем самым вы также сможете уменьшить стоимость устройства.

1) Вход для подключения питания 12V
2) Вход HDMI
3) Вход DVI
4) Вход VGA
5) Аудио вход
6) Аудио выход

В комплекте идут следующие компоненты (они могут немного отличаться по внешнему виду и способам подключения):

1) LVDS кабель, который подключается непосредственно к матрице монитора.
2) Инвертор, отвечающий за работу подсветки.
3) Основная плата с контроллером.
4) Кнопочный интерфейс для настройки параметров изображения.
5) Кабель для подключения кнопочного интерфейса.
6) Кабель для подключения инвертора подсветки.

Проблем с подключением возникнуть не должно, перепутать провода также не получится. В собранном виде всё выглядит примерно так:

Далее нам стоит проверить, работает ли вообще наше устройство. Подключаем LVDS кабель к гнезду в матрице, также на матрице есть кабель для подсветки, его мы подключаем в свободное гнездо инвертора подсветки. Находим в закромах или покупаем блок питания на 12V, возможно, подойдёт и от вашего сломанного ноутбука. Обязательно смотрим, чтобы штекер легко подключался в гнездо платы управления. Затем соединяем видеовыход компьютера с видеовходом платы управления одним из трех кабелей (HDMI, DVI, VGA). Подаём 12V, включив наш блок питания в розетку. Упсс! Ничего не происходит. Как и на обычном мониторе в устройстве предусмотрена кнопка включения\отключения. Нажимаем кнопку «ON\OFF» на кнопочном интерфейсе. И о чудо! Мы видим изображение. Если у вас и на этом этапе чёрный экран, проверьте, правильно ли вы соединили все провода, хорошо ли они сидят в гнёздах плат, рабочий ли вообще у вас блок питания. У меня всё получилось с первого раза.

Далее всю эту кучу проводов и плат нужно красиво закрепить на мониторе. Я прикрутил все платы к задней пластиковой стенке монитора, предварительно просверлив два отверстия для LVDS кабеля и кабеля инвертора подсветки, так как они подключаются непосредственно к матрице. Также к задней стенке я прикрутил два металлических уголка, чтобы без проблем ставить монитор на стол. Вы можете приделать крепления для установки монитора на стену, если это необходимо. Вот что получилось в конечном итоге, мой брутальный монитор =)

Где и как можно применить данный монитор:

Первые два пункта применимы только к видеокартам со множеством видеовыходов.

1) В качестве дополнительного рабочего стола. Например, запускаете фильм на одном экране, а на втором занимаетесь сёрфингом в сети или набираете текст. И нет необходимости открывать\закрывать, сворачивать\разворачивать мешающие окна.

2) В качестве дублирующего монитора. Можно вывести его в другую комнату и смотреть, например, фильм или любимую передачу уже там. В моей плате есть аудиовход и выход, можно без проблем подключить акустику. Также не составит проблем найти длинный видеокабель, я работал с VGA кабелем, у которого длина была более 20 метров.

3) Если вы знакомы с Raspberry Pi , то вы также сможете без проблем подключить к ней этот монитор.

П.С. На все интересующие вопросы отвечу в комментариях.

 
Статьи по теме:
Как разблокировать телефон
Как разблокировать от оператора ваш Мегафон Login 2 1. Вставляете сим-карту другого сотового оператора в телефон. 2. Включаете Мегафон Login 2 (Megafon Login 2 MS3A) . 3. Должно появится окно для ввода кода разблокировки . 4. Вводите код: 67587048 5. Теп
Asus ZenFone Max ZC550KL — Советы, рекомендации, часто задаваемые вопросы и полезные параметры
Как вставить SIM-карту на свой Asus ZenFone Max? Asus ZenFone Max — это смартфон с двумя SIM-картами и поддерживает соединение 2G / 3G / 4G. SIM-карта, поддерживаемая устройством, является Micro SIM-картой и может быть видна после снятия задней крышки тел
Что такое расширение файла CDR?
CDR-формат — это файл, который был создан в программе Corel DRAW, содержащей растровое или векторное изображение. Компания Corel использует этот формат в собственных продуктах, поэтому его можно открыть также другим программным обеспечением данной компани
Multisim 17 где находится библиотека элементов
Компоненты и библиотеки элементов Multisim 11 Контрольно-измерительные и индикаторные приборы В Multisim имеются измерительные приборы, каждый из которых можно использовать в схеме только один раз. Эти приборы рас­положены в библиотеке контрольно-из