Приборы с зарядовой связью - основа современной телевизионной техники. основные характеристики пзс


Матрица ПЗС (Прибор с Зарядовой Связью) или по-английски CCD (Charge-Coupled Device) представляет собой матрицу светочувствительных элементов, способных накапливать электрический заряд под действием света и передавать этот заряд от одного элемента к другому. Матрицы ПЗС используются в подавляющем большинстве цифровых фотоаппаратов и видеокамер.

Принцип действия светочувствительных элементов матрицы состоит в следующем. Основой матрицы служит подложка из кремния p-типа. Кремний p-типа получают добавлением к кремнию примесей, например атомов бора. В результате добавления примеси в кристалле кремния создаются свободные, положительно заряженные носители – дырки. Дырки являются основными носителями заряда, поскольку свободных электронов в таком кристалле практически нет. Реакция на свет является следствием явления внутреннего фотоэффекта, когда фотон, попадая в кристалл кремния, генерирует пару носителей зарядов – электрон и дырку. На поверхность подложки нанесен слой диэлектрика – двуокиси кремния, полученной на поверхности подложки термическим окислением. Двуокись кремния является прозрачной и не препятствует проникновению света. Поверх диэлектрика нанесены электроды из поликристаллического кремния, осажденного из газовой фазы. При подаче на электрод положительного потенциала, дырки вытесняются из области кремния, находящейся вблизи этого электрода и вокруг него начинают скапливаться электроны, возникающие в результате внутреннего фотоэффекта. Причем этих электронов тем больше, чем больше света попало на близлежащий участок подложки. Если на этом электроде убрать положительный потенциал, а создать его на соседнем электроде, накопленный заряд переместится на соседний электрод. Изменяя потенциалы на электродах можно передвигать накопленный заряд от одного электрода к другому, практически не меняя его величины.

Каждый светочувствительный элемент имеет три электрода, что позволяет управлять направлением перемещения зарядов. Если на первых электродах всех элементов имеется положительный потенциал, то электроны будут скапливаться именно под этими, первыми электродами. Если уменьшить положительный потенциал на первых электродах и увеличить на вторых, то накопленный заряд переместится к ним. Если теперь уменьшить потенциал на вторых электродах и увеличить его на третьих, заряд переместится под третьи электроды. Если уменьшить заряд под третьими электродами, и увеличить на первых, заряд переместится между элементами, поскольку первый электрод соседнего элемента окажется к нему ближе. Таким образом, матрица светочувствительных элементов может последовательно перемещать заряды от одного элемента к другому через всю матрицу.

По принципу перемещения и считывания заряда различают три типа ПЗС матриц. Это матрицы с полнокадровым переносом (Full-Frame Transfer CCD, FF CCD), с кадровым переносом (Frame Transfer CCD, FT CCD) и с чересстрочным переносом (Interline CCD, IL CCD).

Матрицы с полнокадровым переносом используют для переноса заряда саму матрицу светочувствительных элементов, поочередно передавая каждую строку матрицы в сдвиговый регистр, откуда данные поэлементно передаются на вход усилителя, и далее, в аналого-цифровой преобразователь. Чтобы исключить изменение зарядов под действием света во время их переноса, для таких матриц необходим механический затвор.

Матрицы с кадровым переносом имеют промежуточную, защищенную от света область хранения. После экспонирования кадр перемещается в защищенную область, откуда построчно поступает в сдвиговый регистр, и далее в усилитель и аналого-цифровой преобразователь. Такие матрицы не требуют механического затвора, однако такая конструкция существенно увеличивает стоимость матрицы.

Если в матрицах с кадровым переносом весь кадр целиком переносится в единую буферную область, то в матрицах с чересстрочным переносом для каждого столбца светочувствительных элементов имеется свой буферный регистр, защищенный от воздействия света. Заряды из каждого столбца переносятся в буфер, и затем поэлементно передаются из буферных регистров в сдвиговый регистр. Такая схема не требует механического затвора и позволяет реализовать очень короткие выдержки. Однако основной недостаток этой схемы состоит в том, что существенная часть площади поверхности матрицы занята буферными регистрами, что сильно снижает ее светочувствительность. Для преодоления этого недостатка поверхность матрицы покрывают микролинзами, концентрирующими световой поток, падающий на всю поверхность элемента матрицы на относительно небольшой площади его поверхности, чувствительной к свету.

Основными характеристиками ПЗС матриц, помимо ее разрешения, являются ее физические размеры, светочувствительность, уровень шума, динамический диапазон.

Определяющей характеристикой при этом являются физические размеры матрицы, а светочувствительность, уровень шума и динамический диапазон во многом зависят от ее физических размеров.

Если разделить ширину и высоту матрицы в миллиметрах на количество пикселей в матрице по горизонтали и вертикали, получатся линейные размеры пикселя. Для современных матриц линейные размеры пикселей составляют около 3-10 мкм по вертикали и горизонтали. Именно размер пикселей влияет в наибольшей степени на светочувствительность, уровень шума и динамический диапазон матрицы. При этом следует учитывать, что светочувствительный элемент может занимать не всю площадь поверхности пикселя, часть поверхности занимают дополнительные элементы, хотя в некоторой степени это обстоятельство исправляется при помощи применения микролинз.

Динамический диапазон матрицы определяется как соотношение величины максимального заряда, который может быть накоплен в светочувствительном элементе, к минимально различимому заряду, который в свою очередь определяется уровнем шума. Понятно, что максимальный заряд пропорционален площади светочувствительного элемента – чем больше размер положительно заряженного электрода, тем больше электронов может быть накоплено вблизи него.

Чувствительность матрицы определяется как соотношение уровня полезного сигнала – заряда получаемого под воздействием света, к уровню шума. Заряд получаемый под воздействием света тем больше, чем большее количество фотонов попадет на светочувствительный элемент, и следовательно, чем больше его площадь.

Уровень шума матрицы складывается из нескольких составляющих, таких как тепловой шум, шум переноса, шум считывания и других. Тепловой шум возникает вследствие того, что свободные электроны могут образовываться в полупроводнике не только под воздействием света, но и в результате тепловых колебаний. Это явление называется термоэлектронная эмиссия, и хотя и представляет собой случайный процесс, происходит более-менее равномерно по всему объему полупроводника. В результате, в каждый пиксель попадает некоторое количество тепловых электронов. Понятно, что их количество также зависит от площади пикселя – чем больше площадь, тем больше тепловых электронов в нем образуется. В разных пикселях может образовываться разное количество тепловых электронов, однако в основном оно будет составлять значение, близкое к некоторой средней величине. При этом степень искажения изображения будет зависеть не столько от этой средней величины, сколько от разницы в количестве тепловых электронов в разных пикселях. Кроме того, среднее количество тепловых электронов вполне можно определить использовав крайние, не участвующие в формировании изображения и не засвеченные пиксели, после чего скорректировать величины зарядов всех пикселей на эту величину. Разницу в количестве тепловых электронов определить не получится, но эта разница практически не зависит от площади пикселя. Величина шума переноса и шума считывания также не зависит от площади пикселя, следовательно, при увеличении площади пикселя соотношение величины полезного сигнала к суммарной величине шумов будет увеличиваться.

Можно посмотреть на проблему и немного с другой стороны. Если представить себе ПЗС матрицу, в которой структура полупроводника абсолютно идеальна, легирующие примеси распределены абсолютно равномерно, форма и размер элементов соблюдены достаточно строго, то станет понятно, что в такой матрице тепловые электроны будут возникать практически одинаково во всех пикселях, все пиксели будут одинаково реагировать на свет, и в результате мы получим изображение, максимально соответствующее оригиналу. Однако на практике идеальных матриц не бывает, любая матрица будет иметь те или иные дефекты структуры. Соответственно и количество тепловых электронов будет не одинаково в разных пикселях, и их реакция на одно и то же количество света будет отличаться. В результате уровень шума возрастет, и возрастет тем сильнее, чем большие дефекты будут встречаться в матрице. При производстве матриц, количество и величину дефектов стараются свести к минимуму, однако чем мельче дефекты, тем труднее их предотвратить. При увеличении размеров матрицы, и размеров каждого пикселя, влияние этих дефектов снижается, а соответственно, снижается и уровень шума.

Разница в чувствительности к свету отдельных пикселей обычно малозаметна, однако в большинстве матриц встречаются пиксели, имеющие нетипично большую чувствительность. На практике это проявляется при съемке с большими выдержками в виде ярких цветных точек на темном фоне. Обычно такие пиксели называют «горячими».

Количество таких пикселей на разных типах и разных экземплярах матриц отличается, и как правило, не превышает десятка пикселей на всю матрицу. Для борьбы с этим явлением существуют специальные средства, встроенные во внутреннее программное обеспечение фотоаппарата. Если эти средства не помогают, бороться с ним можно и при помощи графических редакторов вручную, или используя специальные программы.

Реальная чувствительность ПЗС матриц, определяемая как соотношение полезного сигнала и шума, как правило, недоступна человеку, использующему фотоаппарат. Да и информативность этой электронной характеристики для фотографа была бы крайне низкой. Поэтому производители цифровых фотоаппаратов не указывают ее среди технических характеристик, а вместо этого указывают чувствительность фотоаппарата в единицах ISO, аналогичных единицам измерения чувствительности фотопленки. Однако чувствительность фотоаппарата мало связана с реальной чувствительностью матрицы.

Большинство фотоаппаратов может иметь несколько режимов с разной чувствительностью. В большинстве случаев, изменение чувствительности фотоаппарата осуществляется при помощи изменения аналогового усиления получаемого с матрицы сигнала. Понятно, что при увеличении усиления, вместе с полезным сигналом усиливаются и шумы.

Поскольку светочувствительные элементы ПЗС матриц реагируют на количество света, но не могут различать его спектральный состав, матрицы ПЗС по своей природе являются черно-белыми. И хотя разница в реакции на свет различной частоты в ПЗС матрицах все-таки существует, использовать это в обычных матрицах невозможно. Поэтому, для получения цветного изображения в цифровых фотоаппаратах применяют различные способы.

В высококачественных видеокамерах, также оснащенных ПЗС матрицами, применяют один из самых эффективных способов получения цветного изображения. При помощи специальной призмы световой пучок из объектива разделяют на три части, и направляют на три отдельные ПЗС матрицы, перед каждой из которых размещен светофильтр соответствующего цвета. Матрицы видеокамер имеют невысокое разрешение, определяемое параметрами стандартного видеосигнала, и соответственно не очень высокую стоимость. В результате такое техническое решение приводит к относительно небольшому увеличению стоимости камеры при резком улучшении качества изображения. В цифровых фотоаппаратах, где стоимость светочувствительной матрицы составляет весьма существенную часть стоимости аппарата, такое решение привело бы к недопустимому увеличению стоимости. Поэтому такой способ получения цветного изображения не применяют.

В некоторых профессиональных студийных аппаратах используют последовательную съемку трех отдельных кадров через соответствующие цветные светофильтры, однако такой способ годится только для съемки в студийных условиях неподвижных объектов.

Наибольшее распространение в цифровых фотоаппаратах получил способ на основе использования цветных микрофильтров, нанесенных на каждый пиксель. Смысл этого способа сводится к тому, что каждый пиксель реагирует только на свет определенного цвета, а цвета пикселей при этом чередуются. После считывания и оцифровки данных с ПЗС матрицы их программным способом обрабатывают, рассчитывая значение всех трех цветов для каждого пикселя. Понятно, что такая обработка есть не что иное, как интерполяция, и приводит к ухудшению разрешающей способности матрицы. Однако это ухудшение происходит в основном в цветовых каналах изображения, в канале яркости разрешение практически не ухудшается. Кроме того, человеческий глаз слабее воспринимает цвет мелких деталей, поэтому ухудшение разрешения в цветовых каналах практически незаметно.

Еще одна проблема может возникать в ПЗС матрицах при съемке ярко освещенных объектов. Если на светочувствительный элемент попадает слишком большое количество света, число электронов, сгенерированных в результате внутреннего фотоэффекта начинает превышать то количество электронов, которое может удерживаться вблизи положительно заряженного электрода. В результате, электроны начинают перемещаться внутри кристалла, скапливаясь под ближайшими положительно заряженными электродами, емкость которых еще не исчерпана. Это явление получило название блюминга и на практике приводит к размыванию изображения. Конечно, проще всего было бы просто уменьшить количество света, попадающего на матрицу, изменив экспозицию. Однако во многих случаях это приведет к тому, что детали в темных участках кадра станут неразличимыми. Поэтому для борьбы с этим явлением применяют так называемый электронный дренаж. Для этого, вблизи светочувствительных элементов размещают каналы, по которым лишние электроны удаляются из матрицы. По схеме реализации различают вертикальный дренаж, когда электроны удаляются при помощи подачи положительного потенциала на подложку матрицы, и боковой дренаж, когда между рядами пикселей размещают положительно заряженные проводники. В первом случае это приводит к некоторому снижению максимальной емкости пикселя, а во втором – к уменьшению полезной площади поверхности матрицы.

Сравнение по чувствительности покажет нам преимущества ПЗС‑матриц в отношении видикона и ньювикона, а также в отношении эмульсии пленки.

В фотографии чаще всего используется пленка в 100 ISO, хотя можно приобрести пленку в 200 ISO (в два раза более чувствительную) или 400 ISO (в четыре раза чувствительнее, чем пленка 100 ISO).

Иногда можно даже встретить пленку в 1600 ISO, которая обычно применяется в ситуациях чрезвычайно низкой освещенности (в терминах фотографии).

Можно показать, что средняя черно‑белая ПЗС‑матрица имеет очень высокую чувствительность в сравнении с эмульсией пленки. В ясный солнечный день для типичной пленки в 100 ISO потребуются установки фотокамеры на 1 /125 с и F/16. Если на ту же сцену направить ПЗС‑телекамеру, у которой нормальная выдержка CCIR затвора составляет 1/50 с, то следует использовать объектив примерно с F/1000 (плюс‑минус одно F‑число, так как АРУ телекамеры тоже играет роль). Если мы изменим 1/50 на 1/125 (в 2.5 раза короче), то чтобы получить ту же экспозицию, объектив должен быть раскрыт на 2.5 значения F‑числа шире, чтобы скомпенсировать сокращение времени выдержки. Это даст нам вместо F/1000 примерно F/400 (вы помните F‑числа: 1.4, 2, 2.8, 4, 5.6, 8,11,16, 22, 32, 44, 64, 88, 128, 180, 250, 360, 500, 720, 1000, 1400 и т. д.). Теперь, чтобы перевести чувствительность эмульсии пленки от 100 ISO 1/125 и F/16 к эквивалентным установкам пленки более высокой чувствительности, зная, что чувствительность увеличивается вдвое с удвоением единиц ISO, мы получим изменение диафрагменного числа в 9.5 раз, от F/16 до F/400. Это примерно 29.5 = 720 раз. Итак, средняя чувствительность черно‑белой ПЗС‑матрицы, выраженная в фотографических единицах ISO, равна примерно 100 ISOx720 = 72 000 ISO!

Рис. 5.13. Принцип работы ПЗС‑телекамеры

Рис. 5.14. Элемент изображения ПЗС

Аналогично мы можем найти, что эквивалентная чувствительность цветной ПЗС‑телекамеры равна примерно 5000 ISO, что тоже немало по фотостандартам.

Химическая (пленочная) фотография постепенно соединяется с электронными камерами. Говоря о компьютеризации фотографических процессов и цифровых технологиях, а также о появлении различных фотостандартов CD, следует отметить, что фотокамеры тоже претерпевают революционные изменения, и мы скоро увидим новые фотокамеры на ПЗС с увеличенной светочувствительностью.

Такие камеры не зависят от ТВ‑стандартов, поэтому нет практически никаких ограничений на число пикселов и соотношение сторон. Даже когда еще только создавалась эта книга, производители начали изготавливать матрицы размером всего 62 мм х 62 мм, с не менее 5120 х 5120 элементов изображения. Как уже упоминалось, все это касается фотокамер, и не стоит их путать с телекамерами для видеонаблюдения.

Спектральная чувствительность ПЗС‑матриц зависит от типа кремниевой подложки, но общая характеристика является результатом фотоэффекта: более длинные волны глубже проникают в кремниевую структуру ПЗС. Имеется в виду красный и инфракрасный свет. Типичная спектральная кривая ПЗС‑матрицы показана на рис. 5.15.

Рис. 5.15 . Спектральная чувствительность глаза и ПЗС‑матрицы

Даже если такое «проникновение» может показаться выигрышным (кажется, что ПЗС‑матрица становится более чувствительна), имеются причины предотвращения проникновения более длинных волн глубоко внутрь матрицы. В частности, такие волны могут быть настолько сильны, что могут генерировать электронные носители в зонах, которые не должны подвергаться воздействию света. В результате в изображении могут пропасть мелкие детали, потому что заряд ячеек растечется по соседним, теряя при этом компоненты высокого разрешения и вызывая «эффект заплывания» (blooming ). Может быть затронута также и масковая зона, предназначенная лишь для временного хранения зарядов и не предназначенная для засвечивания, в результате чего могут в значительной степени возрасти шум и вертикальный ореол (smear ).

Поэтому в усовершенствованных ПЗС‑телекамерах применяются специальные оптические инфракрасные отсекающие фильтры. Эти фильтры представляют собой оптически точные плоскопараллельные пластинки, монтируемые сверху ПЗС‑матрицы. Они ведут себя как оптические низкочастотные фильтры с частотой среза порядка 700 нм, вблизи красного цвета.

Однако, ряд производителей черно‑белых телекамер предпочитает не использовать такие фильтры, чтобы не ослаблять их чувствительность. Это приемлемо в тех случаях, когда предполагается использовать телекамеру в условиях низкой освещенности или в систему входят источники инфракрасного света, однако с теоретической точки зрения телекамера с инфракрасным отсекающим фильтром имеет более высокую разрешающую способность (по сравнению с такой же ПЗС‑матрицей без ИК‑отсекающего фильтра), лучшее отношение сигнал/шум и более естественное преобразование цветного изображения в черно‑белое при не такой уж низкой чувствительности.

Рис. 5.16. Инфракрасный отсекающий фильтр изменяет характеристику спектральной чувствительности ПЗС‑матрицы

В цветных ПЗС‑камерах, напротив, нужно использовать ИК‑отсекающий фильтр, так как спектральная характеристика ПЗС‑матрицы, которая отлична от характеристик человеческого глаза, должна соответствовать спектральной чувствительности человеческого глаза. Это к тому же одна из причин того, почему цветные ПЗС‑камеры менее чувствительны, чем ч/б.

Типичная черно‑белая ПЗС‑матрица без инфракрасного фильтра может дать приемлемый уровень видеосигнала всего на 0.01 лк. Та же телекамера с ИК‑фильтром потребует освещенности на объекте в 0.1 лк.

Современные цветные телекамеры характеризуются минимальной освещенностью на объекте в 2 лк при F/1.4 и дают видеосигнал приемлемого уровня (от 0.3 до 0.5 В).

Развитие ПЗС‑технологии достигло такого уровня, что стало возможно производство матриц с несколькими миллионами пикселов. В цифровой фотографии 6‑мегапиксельные матрицы стали уже привычными, а производители пытаются добиться и большего. Что касается систем видеонаблюдения, то здесь мы ограничены стандартами аналогового телевидения, поэтому сейчас редко встречаются ПЗС‑матрицы с разрешением выше, чем, например, 752x584 пикселов, что дает примерно 400,000 пикселов.

О разрешении и о том, как его измерять, мы подробнее расскажем немного позже, но сейчас хотелось бы остановиться на нескольких очень перспективных решениях, которые, строго говоря, не являются телекамерами для видеонаблюдения, но позволяют получить очень высокое разрешение.

Одно из таких решений было разработано компанией Spectrum San Diego , которое называется SentryScope и позволяет получать изображение с разрешением 21 миллион пикселов. В основе SentryScope лежит линейный ПЗС с 2048 пикселами, который формирует изображение примерно так же, как это делают спутники при фотографировании земной поверхности. В SentryScope используется поворачивающееся зеркало, которое отражает на линейный ПЗС линии формируемого изображения. Поворачивающееся зеркало сканирует широкую область, которая эквивалентна 10,000 пикселов. Эта система не создает видеосигнал как таковой, но позволяет формировать изображение (с помощью ПК) с очень высокой степенью детализации.

Рис. 5.17. Ч/б ПЗС‑матрица без инфракрасного отсекающего фильтра

Рис. 5.18. Цветная ПЗС‑матрица с инфракрасным отсекающим фильтром

Рис. 5.19. Различные типы ПЗС‑матриц

Сейчас появилось немало и других интересных решений, позволяющих повысить разрешение. В качестве примера можно привести телекамеру, разработанную компанией Co‑Vi. В этой телекамере используется ПЗС‑матрица с более высоким разрешением, чем обычно (1280x720 пикселов). Полученное изображение высокого разрешения затем масштабируется до стандартного разрешения, чтобы получить аналоговый видеосигнал. Основное отличие предложенного решения заключается в том, что при увеличении участка изображения разрешение не снижается, так как при увеличении фактически "вырезается" часть изображения высокого разрешения (чуть менее 1 миллиона пикселов). Для пользователя это похоже на работу с поворотной телекамерой с двукратным увеличением, что позволяет увидеть больше деталей.

Некоторые разработчики систем видеонаблюдения применяют еще одно интересное решение, в рамках которого используются стандартные телекамеры с длиннофокусными объективами, которые организованы в матрицы 3x3 или даже 4x4 телекамеры и направлены на какой‑то объект таким образом, что поле их зрения друг с другом немного пересекается. Полученные изображения передаются на стену, состоящую из 3x3 или 4x4 мониторов, что дает суммарное разрешение от 3.6 до 6.4 миллионов пикселов. В результате получается очень большое и детализированное изображение, которое можно записать и на обычный цифровой видеорегистратор стандартного разрешения.

Рис. 5.20. Телекамера Sentry‑Scope с ПЗС‑матрицей и разрешением 21 миллион пикселов позволяет разглядеть очень мелкие детали

В процессе эволюции разрешение цифровых фотокамер увеличилось в несколько раз. Поэтому большое количество производителей ЭОП, изделия которых использовались в ранних моделях фотоаппаратов, в итоге сильно сократилось. Кроме увеличения азрешения на процесс «естественного отбора» влияли и другие причины. Помимо уже рассмотренных характеристик (динамический диапазон, соотношение сигнал/шум и т. д.), для проектировщиков камеры важны также уровень энергопотребления ЭОП и совместимость с существующей элементной базой, а для производителя сенсора - процент брака и себестоимость устройств.

На рубеже тысячелетия можно было выделить двух крупнейших производителей ПЗС-матриц для профессиональной и студийной техники - Eastman Kodak в США и Philips в Европе.

Заслугой разработчиков Kodak является внедрение бокового антиблюмингового дренажа в полнокадровых матрицах, позволившего значительно увеличить динамический диапазон ЭОП по сравнению с сенсорами, в которых был применен вертикальный дренаж. В матрицах, изготовленных по технологии BluePlus, электрод, расположенный над светочувствительной областью пиксела, изготавливался на основе оксида индия и диоксида олова. За счет этого значительно повышался коэффициент пропускания электрода, в итоге резко выросла чувствительность сенсора, особенно в традиционно «трудных» для ЭОП «синей» и «фиолетовой» областях спектра.

Всю продукцию Kodak можно разделить на три большие категории:

  • ПЗС-матрицы для студийной и профессиональной техники;
  • ПЗС-линейки для студийных сканирующих приставок к крупноформатным фотоаппаратам;
  • ПЗС-матрицы и КМОП-сенсоры для любительских фотокамер.

Сенсоры для любительских моделей используются, за редким исключением, только в фотоаппаратах Kodak. Зато матрицы, предназначенные для студийных камер, применяются практически всеми производителями этой категории. Последняя разработка фирмы - сенсор с разрешением 22 мегапиксела.

Голландским концерном Philips была сделана попытка минимизировать себестоимость ПЗС-матриц с помощью оригинальной технологии Building Block. При обычном производстве ПЗС-матрица высокого разрешения изготавливается единым блоком и при браке потери велики. Кроме того, максимальный размер ЭОП ограничивается возможностями оборудования. В противоположность этому, методика Building Block (буквально - кирпичи), разработанная Philips, основана на использовании «кирпичиков», состоящих из модулей размером 1000x1000 пикселов. Объединяя данные «кирпичики», можно построить сенсор практически неограниченного разрешения. При этом в случае обнаружения дефекта в одном из модулей его можно легко заменить. Таким образом, себестоимость изделия значительно ниже.

Наибольшей популярностью пользовалась шестимегапиксель-ная матрица FTF 3020 (36x24 мм), применявшаяся в большинстве моделей студийных камер. Из новых сенсоров перспективным считается 11-мегапиксельный ЭОП, тоже созданный по технологии Building Block. Его мегапиксельные «кирпичики» по габаритам меньше прежних модулей, поэтому размеры новой матрицы такие же, как и у шестимегапиксельной модели. Благодаря этому студийные фотоаппараты, использовавшие FTF 3020, легко могут быть оборудованы новым сенсором.

Как было замечено выше, основной особенностью матриц Fuji-Film являются нестандартная форма и расположение элементов, в то же время реальных плюсов данные решения не продемонстрировали. В результате матрицы этой фирмы применяются только в фотоаппаратах FujiFilm, хотя ассортимент сенсоров довольно широк и включает в себя разработки для профессиональной техники.

Корпорация Sony с самого начала ориентировалась исключительно на рынок массовой техники. При этом разработчикам данной фирмы удалось внедрить ряд решений, благодаря которым качество кадров значительно улучшилось.

Одной из основных инноваций была технология HAD - Hole-Accumulation Diode. В матрицах HAD носителями информации о заряде пиксела были не электроны, а так называемые «дырки». При этом отпадала необходимость в полисиликоновом электроде над светочувствительной частью пиксела и значительно увеличивалась чувствительность сенсора, особенно в коротковолновой части спектра. Кроме того, размещение поглощающего «дырки» слоя у поверхности матрицы уменьшало тепловой шум.

При максимально открытой диафрагме растет процент лучей, падающих на поверхность матрицы под большими углами. После прохождения через микролинзы обычной конструкции эти лучи, как правило, не попадали на светочувствительный элемент. Чтобы уловить максимальное количество света, попадающего на микролинзу, разработчики Sony в матрице New Structure CCD использовали дополнительный оптический элемент. Расположенная непосредственно над светочувствительным элементом внутренняя линза корректировала лучи, входящие под большими углами.

Ассортимент ПЗС-матриц Sony очень велик, причем с увеличением разрешения размер и интерфейсные разъемы сенсора не изменяются, что позволяет при разработке нового фотоаппарата использовать прежнюю оптику и корпус.

С появлением в модельном ряде матрицы ICX413 Sony заняла соответствующую нишу на рынке профессиональных камер. При диагонали 28,4 мм размеры, сенсора (23,4x15,6 мм) соответствуют кадру пленки формата APS, поэтому он идеально подходит для использования в моделях, создаваемых на базе пленочных «зеркалок». В результате эту шестимегапиксель-ную матрицу выбрал Nikon для своей профессиональной модели D-100.

Значительных успехов в разработке КМОП-матриц для профессиональных камер добился концерн Canon. Размер сенсора был увеличен до габаритов кадра APS, в результате возросло отношение светочувствительной части пиксела к «обвязке» и, как следствие, значительно поднялась чувствительность.

Кроме того, в состав компонентов каждого пиксела был включен своеобразный «фильтр», который замерял уровень электронного шума, генерируемого «обвязкой» в нерабочем состоянии. При съемке «фильтр» каждого элемента автоматически «вычитал» этот шум из сигнала, в результате влияние неравномерно распределенных по матрице электронных помех удалось снизить.

Лидирующие позиции в области разработки КМОП-матриц занимает белый искал фирма Fill Factory. Она была основана в 1999 году, но разработками КМОП-матриц занималась еще с 1987 года, будучи подразделением ШЕС, Европейского независимого центра микроэлектронных технологий. В итоге в стенах FillFactory появился ряд интересных и эффективных решений, улучшивших показатели КМОП-сенсоров.

В первую очередь удалось значительно увеличить светочувствительную область пиксела. В обычных КМОП-матрицах фотоны «выбивают» электроны на всей поверхности пиксела. Только вот эти «фотоэлектроны» (термин ненаучный, но иногда в оптоэлек-тронике применяемый) притягиваются либо «обвязкой» (расположенной, кстати, на поверхности матрицы), либо подложкой сенсора. Поэтому «фотоэлектроны», генерируемые поверхностью вокруг фотоэлемента (а это более 70 % всей площади пиксела), в процессе создания заряда никоим образом не участвуют.

Специалисты FillFactory предложили простое и гениальное решение. Благодаря генерируемому электростатическому барьеру «фотоэлектроны», генерируемые под «обвязкой», не поглощаются ни «обвязкой», ни подложкой, а «всасываются» потенциальной ямой фотоэлемента. Процесс «всасывания» не столь уж и длителен (от 10 до 50 наносекунд), поэтому тепловой шум (обычно заметен при «длинных» выдержках на всех типах сенсоров) практически отсутствует. А вот чувствительность сенсора возрастает в несколько раз, при этом нет необходимости использовать матрицы больших габаритов. Следовательно, данная технология может быть использована и в любительской технике.

Динамический диапазон КМОП-сенсора можно расширить, используя еще одну из наработок FillFactory - нелинейный режим накопления заряда. В этом режиме в «обвязку» пиксела добавлены элементы, которые при достижении определенного уровня заряда в потенциальной яме переключают пиксел в состояние «насыщения». В этом состоянии «фотоэлектроны» накапливаются в потенциальной яме менее интенсивно, уменьшая риск ее переполнения.

Благодаря данной методике происходит адаптивное сжатие динамического диапазона кадра - светлые участки не выглядят «засвеченными», а темные - «недодержанными». Кроме того, не нужна большая разрядность АЦП, сокращается также размер кадров.

Разработанные FillFactory КМОП-сенсоры нашли свое применение как в студийных (Leaf C-Most, Leaf Valeo), так и в профессиональных (Kodak DCS Pro 14n) фотоаппаратах. Возможно, что в недалеком будущем КМОП-матрицы этой фирмы будут использоваться и в любительской технике.

Издание: Цифровые фотоаппараты. 2-е изд.

Глава 3
Электронно-оптические преобразователи

После прохождения оптики световой поток попадает на регистрирующий элемент - электронно-оптический преобразователь (ЭОП). Как уже упоминалось, в основном в этих целях используются матрицы ПЗС - приборов с зарядовой связью. Несмотря на то что ЭОП на КМОП-элементах в последнее время появляются даже на профессиональных моделях, подавляющее большинство фотоаппаратов оснащены именно ПЗС-матрицами. Рассмотрим подробнее конструкцию этих устройств.

Общие принципы

Для того чтобы понять, каким образом свет преобразовывается в электрический заряд с помощью структуры с p-n-переходом, целесообразно вспомнить, как взаимодействует излучение с полупроводником.

Излучение, падающее на полупроводник, можно разделить на три части - одна отражается от поверхности, другая поглощается на определенной глубине, а третья проходит «навылет». Для устройств, преобразующих «фотоны в электроны», желательно, чтобы в объеме полупроводника поглощалась основная часть падающего излучения, так как отраженное от поверхности либо прошедшее «насквозь» излучение расходуется бесполезно. А при поглощении образуется пара электрон-дырка, если фотон взаимодействовал с атомом кристаллической решетки полупроводника, либо только электрон или дырка, если фотон взаимодействовал с атомами донорных или акцепторных примесей. Данные процессы поглощения называют внутренним фотоэффектом. Однако просто «выбить» электрон либо дырку из полупроводника недостаточно, необходимо его сохранить.

Поэтому в кремниевой подложке p-типа создаются каналы из полупроводника n-типа. Сверху наносится изолирующий слой окиси кремния. Над каналами размещаются электроды из поликристаллического кремния. При подаче электрического потенциала на электрод в обедненной зоне под каналом n-типа образуется так называемая потенциальная яма, которая способна хранить электроны. После попадания фотона в слой кремния образуется электрон, который в итоге попадает в потенциальную яму, где и хранится. Чем больше фотонов попадает на поверхность (то есть чем интенсивнее световой поток, падающий на поверхность ЭОП), тем выше накапливаемый ямой заряд. Все, что требуется сделать, - считать значение этого заряда, именуемого также фототоком, и усилить его (рис. 3.1).

Рис. 3.1. Элемент ПЗС-матрицы

Для считывания фототоков пикселов используются устройства, называемые последовательными регистрами сдвига, преобразующие строку зарядов на входе в последовательность импульсов на выходе. Полученная последовательность образует сигнал, который можно, например, подать на усилитель.

Таким устройством можно считать заряды строки, состоящей из ПЗС-элементов. Собственно, и сам последовательный регистр сдвига представляет собой строку ПЗС-элементов. А его функционирование основано на способности ПЗС к перемещению зарядов потенциальных ям. Для этого достаточно подать больший потенциал на соседний электрод переноса (transfer gate), под который должен переместиться заряд потенциальной ямы. Количество «транзитных» электродов на каждый ПЗС-элемент регистра может варьироваться от 2 до 4, и именно в зависимости от этого количества регистр может называться двухфазным, трехфазным либо четырехфазным.

При перемещении заряды всех ПЗС-элементов регистра сдвигаются синхронно и, проходя последовательно под электродами переноса, оказываются в соседнем ПЗС-элементе. Тот заряд, которому ПЗС-элемента «не хватило», поступает на выход регистра, а затем - на усилитель.

В свою очередь, на вход последовательного регистра попадают заряды, являющиеся «лишними» для совокупности последовательных регистров, расположенных «перпендикулярно» по отношению к считывающему их фототок регистру. Эта совокупность называется параллельным регистром сдвига и в сочетании с последовательным регистром, подающим сигнал на усилитель, представляет собой собственно ПЗС-матрицу.

Функционирование составляющих ПЗС-матрицу «перпендикулярных» последовательных регистров, именуемых столбцами, строго синхронизировано - все заряды параллельного регистра за один его рабочий цикл смещаются одновременно, а самые «нижние» попадают на вход последовательного регистра. Очевидно, что последовательный регистр должен успеть «сбросить» на вход усилителя всю строку зарядов до очередного рабочего цикла параллельного регистра.

Рис. 3.2. Полнокадровая матрица

Поэтому используются дополнительные устройства: микросхемы, подающие потенциалы на электроды переноса как последовательного, так и параллельного регистров сдвига, микросхема, синхронизирующая работу обоих регистров, а также тактовый генератор.

Описанный тип ЭОП является одним из первых и называется полнокадровой ПЗС-матрицей (full-frame CCD-matrix) (рис. 3.2). В своей работе он использует механический затвор фотоаппарата, который сначала открывает поверхность ПЗС-матрицы для экспонирования, а после того, как все пикселы накопили заряд (эквивалентный световому потоку, упавшему на них), снова за-крывает ЭОП от лучей света. Если этот затвор убрать, то при рабочем цикле параллельного регистра сдвига к заряду каждого из его пикселов добавятся лишние электроны, вызванные попаданием фотонов на открытую поверхность ПЗС-матрицы. Данное явление называется «размазыванием» заряда в полнокадровой матрице (full-frame matrix smear).

Рис. 3.3. Матрица с буферизацией кадра

Скорость считывания кадра в такой схеме ограничено скоростью работы как параллельного, так и последовательного регистров сдвига. А поскольку в любом случае требуется перекрытие светового потока с объектива до завершения процесса считывания, интервал между экспонированием тоже определяется скоростью считывания.

Несколько уменьшен интервал между экспонированием в матрицах с буферизацией кадра (frame-transfer CCD), правда, при этом падает скорость считывания (рис. 3.3). Для промежуточного хранения данных (буферизации) в этих устройствах используется покрытый непрозрачной (металлической) крышкой второй параллельный регистр сдвига с теми же количеством и размерностью строк.

Заряды из ячеек основной матрицы построчно перемещаются в буферный параллельный регистр, а затем считываются последовательным регистром сдвига, как и в полнокадровой матрице. В тот промежуток, пока происходит считывание данных из буферного параллельного регистра, матрица снова готова к экспонированию. Недостатком данной системы является более высокая стоимость, особенно если учесть, что кардинального увеличения скорости съемки при этом не происходит, да и от механического затвора не удается избавиться.

Чтобы максимально увеличить частоту смены кадров, необходимо предельно сжать интервал между экспонированием, поэтому для видеокамер была разработана система с буферизацией столбцов (interline CCD-matrix) (рис. 3.4).

В матрицах этого типа, как и в сенсорах с буферизацией кадра, используется буферный параллельный регистр сдвига, накрытый непрозрачной (металлической) крышкой. Однако буферный столбец (последовательный регистр сдвига) подключается к «светочувствительному» столбцу не последовательно, а параллельно. Поэтому «светочувствительный» параллельный регистр за один рабочий цикл «сбрасывает» свои заряды буферному (то есть происходит перемещение зарядов не «сверху вниз», а «слева направо»), освобождая свои ямы для следующего экспонирования. А в это время буферный параллельный регистр переносит заряды по обычной схеме - «сверху вниз», к последовательному регистру сдвига матрицы.

Рис. 3.4. Матрица с буферизацией столбцов

Поскольку «сброс» зарядов в буферный регистр происходит очень быстро, потенциальные ямы светочувствительных элементов не переполняются, таким образом, нет необходимости за- крывать затвор. В то же время экспонирование занимает примерно тот же интервал времени, что и считывание зарядов из буферного параллельного регистра. В целом быстродействие такой системы позволяет обеспечить видеосигнал с приемлемой частотой кадров (от 30 кадров в секунду и выше).

Существует два типа схем с буферизацией столбцов. Если за один такт считываются все строки, то это матрица с прогрессивной разверткой (progressive scan). Если за первый такт считываются нечетные строки, а за второй - четные (или наоборот), то это матрица с чересстрочной разверткой (interlace scan). Следует отметить, что к настоящему моменту обозначение «сенсор с буферизацией столбцов» практически повсеместно вытеснено терминами «матрица с прогрессивной (или чересстрочной) разверткой».

Несмотря на наличие буферного регистра, матрицам с буферизацией столбцов не удалось избежать «размазывания» заряда (interline matrix smear). Причиной тому частичный дрейф электронов из потенциальных ям «светочувствительного» регистра в потенциальные ямы буфера. Чаще всего это происходит при предельных уровнях фототока, вызванных ярким освещением. Визуально это выражается в светлой вертикальной полоске, тянущейся сквозь «яркий» пиксел.

Чтобы избавиться от этого неприятного эффекта, «светочувствительный» и буферный столбцы изготавливают так, чтобы они располагались на большом расстоянии друг от друга. Конечно, это усложняет обмен зарядом, а также увеличивает временные затраты на данную операцию. Тем не менее вред, который наносит изображению «размазывание», не оставляет разработчикам выбора.

Схема с буферизацией столбцов также дает возможность реализации электронного затвора. Данное устройство позволяет, в принципе, обойтись без механического затвора и достичь сверхмалых (до 1/10 000 секунды) значений выдержки, особенно критичных для съемки быстротекущих процессов (спортивные состязания, природа и т. д.). Правда, для реализации электронного затвора необходима функция удаления избыточного заряда пиксела, речь о которой пойдет далее.

Однако система с буферизацией столбцов не лишена недостатков. В результате того, что часть площади матрицы занята регистрами сдвига, размер светочувствительной области каждого пиксела составляет лишь 30 % от его площади, в то время как у полнокадровой матрицы этот параметр равен 70 %. Поэтому производители вынуждены вносить в конструкцию матриц микролинзы, покрывающие пикселы целиком (рис. 3.5). Эти несложные оптические устройства концентрируют световой поток, падающий на всю поверхность элемента сенсора, на относительно небольшую светочувствительную область пиксела.

При применении микролинз удается гораздо эффективнее использовать световой поток, попадающий на поверхность ЭОП. Поэтому со временем этими устройствами стали оснащать и полнокадровые матрицы.

Рис. 3.5. Микролинзы

Однако у микролинз есть и свои минусы. Как любое оптическое устройство, они вносят свою долю искажений в регистрируемое изображение. На практике это выражается в том, что мельчайшие детали кадра теряют резкость, их края становятся более сглаженными.

Впрочем, у этого явления имеется и положительная сторона. Дело в том, что в ряде случаев изображение, формируемое объективом, содержит линии, размер и частота размещения которых совпадают с аналогичными характеристиками пикселов матрицы. В этом случае в кадре зачастую наблюдается ступенчатость (aliasing) - назначение пикселу определенного цвета, вне зависимости от того, закрыт ли он деталью изображения целиком или только его часть, результатом чего являются рваные, зубцеобразные линии. Для решения этой проблемы в камерах с матрицами без микролинз используется дорогостоящий фильтр защиты от наложения спектров (anti-aliasing filter), а ЭОП с микролинзами в таком фильтре не нуждается - в любом случае за это приходится расплачиваться некоторым снижением разрешающей способности сенсора.

Другим недостатком микролинз является то, что они отсекают значительное количество лучей света, попадающих на поверхность матрицы под крутым углом. В то же время при максимально открытой диафрагме доля таких лучей довольно большая, поэтому эффективность поглощения света матрицей (то, ради чего и открывали диафрагму) значительно сокращается.

Справедливости ради следует сказать, что падающие под крутым углом лучи в ряде случаев тоже создают проблемы. Входя в кремний одного пиксела, фотон с большой длиной волны, обладающий высокой проникающей способностью, может поглотиться материалом другого элемента матрицы, что в итоге приведет к искажению изображения. Для решения этой проблемы поверхность матрицы покрывается непрозрачной (например, металлической) «решеткой», в вырезах которой остаются только светочувствительные зоны пикселов.

Полнокадровые матрицы чаще встречаются в профессиональных камерах, а матрицы с буферизацией столбцов - в любительских фотоаппаратах.

Электроды из поликристаллического кремния частично рассеивают свет, уменьшая тем самым чувствительность ПЗС-элементов. До недавнего времени для специализированной съемки, требующей улучшенной восприимчивости ЭОП к синей и ультрафиолетовой части спектра, применялись матрицы с обратной засветкой, в которых свет проникал со стороны подложки (рис. 3.6).

Рис. 3.6. Матрица с обратной засветкой

Для этого на высокопрецизионном оборудовании подложка шлифовалась до толщины 10–15 микрометров. Данная стадия обработки сильно удорожала стоимость матрицы, кроме того, устройства получались очень хрупкими и требовали повышенной осторожности при сборке и эксплуатации. При размещении светофильтров над индивидуальными ячейками ЭОП все действия по увеличению чувствительности теряют смысл, поэтому матрицы с обратной засветкой применяются в студийных камерах, использующих сменные светофильтры.

Чувствительность

Чувствительность регистрирующего устройства, как было сказано в главе «Оптическая система», - это способность реагировать на свет. Для ПЗС-элемента под такой реакцией следует понимать генерацию заряда. А чувствительность ПЗС-матрицы является суммарной характеристикой и зависит от чувствительности каждого пиксела. При этом чувствительность ПЗС-матрицы зависит от двух параметров.
  • Во-первых, это интегральная чувствительность - отношение величины фототока (в миллиамперах) к световому потоку (в люменах) от источника излучения, спектральный состав которого соответствует вольфрамовой лампе накаливания. Этот параметр позволяет оценить чувствительность сенсора в целом.
  • Во-вторых, это монохроматическая чувствительность - отношение величины фототока (в миллиамперах) к величине световой энергии излучения (в миллиэлектронвольтах), соответствующей определенной длине волны. Совокупность значений монохроматической чувствительности составляет спектральную чувствительность - зависимость чувствительности от длины волны света. Спектральная чувствительность определяет способность сенсора корректно регистрировать оттенки определенного цвета.
Как следует из вышесказанного, единицы измерения и интегральной, и монохромной чувствительности отличаются от общепринятых в фототехнике. Именно поэтому производители цифровой фототехники в характеристиках изделия указывают эквивалентную чувствительность ПЗС-матрицы в единицах ISO. Для того чтобы определить эквивалентную чувствительность, достаточно знать освещенность объекта съемки, диафрагму и выдержку.

Итак, чувствительность матрицы определяется чувствительностью каждого ее пиксела. В свою очередь, чувствительность элемента ПЗС-матрицы зависит, во-первых, от площади светочувствительной области (fill factor), а во-вторых, от квантовой эффективности (quantum efficiency), на которую влияет ряд других параметров.

ПРИМЕЧАНИЕ

    Квантовая эффективность - параметр регистрирующего свет устройства, характеризующий эффективность регистрации. Для ЭОП это отношение числа зарегистрированных носителей заряда (электронов либо дырок) к числу упавших на поверхность сенсора фотонов.
В первую очередь следует упомянуть коэффициент отраже- ния - величину, отображающую долю тех фотонов, которые отразятся от поверхности сенсора. Чем больше коэффициент отражения, тем меньше процент фотонов, участвующих во внутреннем фотоэффекте.

Оставшиеся фотоны поглотятся, образуя носители заряда, однако часть из них «застрянет» у поверхности, а часть проникнет слишком глубоко в материал ПЗС-элемента, в обоих случаях не влияя на процесс формирования фототока. Глубина проникновения фотонов в полупроводник, именуемая коэффициентом поглощения, зависит как от материала полупроводника, так и от длины волны падающего света - «длинноволновые» частицы проникают гораздо глубже «коротковолновых». При создании ПЗС-элемента необходимо, чтобы для фотонов с длиной волны, соответствующей видимому излучению, коэффициент поглощения обеспечивал фотоэффект в зоне досягаемости потенциальной ямы.

Зачастую вместо квантовой эффективности используют термин квантовый выход (quantum yield), хотя на самом деле этот параметр отображает количество носителей заряда, образующихся при поглощении одного фотона. Хотя при поглощении фотонов основная масса носителей заряда все же попадает в потенциальную яму ПЗС-элемента, определенная часть электронов (или дырок) избегает «ловушки». В числителе формулы, описывающей квантовую эффективность, оказывается именно то количество носителей заряда, которое попало в потенциальную яму.

Еще одним важным параметром ПЗС-матрицы является порог чувствительности.

ПРИМЕЧАНИЕ

    Порог чувствительности - параметр регистрирующего свет устройства, характеризующий минимальную величину светового сигнала, который может быть зарегистрирован. Чем меньше этот сигнал, тем выше порог чувствительности.
Основным фактором, ограничивающим порог чувствительности, является темновой ток (dark current). Данный ток, являющийся результатом термоэлектронной эмиссии, возникает в ПЗС-элементе при подаче потенциала на электрод, под которым формируется потенциальная яма, а «темновым» он называется потому, что складывается из электронов, попавших в яму при полном отсутствии светового потока. При малых световых потоках величина фототока близка к величине темнового тока, а порой и меньше.

Поскольку при увеличении температуры на 9 ?С наблюдается рост темнового тока в два раза, для подавления этой помехи применяют различные методы. Иногда проблему решают «в лоб». Чтобы уменьшить влияние температуры, используют различные схемы теплоотвода. В частности, иногда теплообменником служит металлический корпус камеры, в студийной фототехнике работают более сложные схемы.

Однако этот подход не применим к любительским камерам, ограниченным по весу и габаритам, поэтому для них разработан метод, подразумевающий использование «черных» пикселов (dark reference pixels) - столбцов и строк по краям матрицы, покрытых непрозрачным материалом. Усредненное значение заряда, снятого с «черных» пикселов, считается уровнем темнового тока. Разумеется, что при разных условиях эксплуатации (температура окружающей среды и самой камеры, ток аккумуляторов и т. д.), уровень темнового тока будет разным. Если брать его значение за «нулевую отметку», то можно определить истинный заряд «рабочих» пикселов матрицы.

При исключении влияния темнового тока основным фактором, ограничивающим порог чувствительности, становится тепловой шум (thermal noise), вызванный хаотичным движением носителей заряда внутри ПЗС-элемента даже при отсутствии потенциала на электродах. При съемке с «длинной» выдержкой блуждающие носители заряда постепенно накапливаются в потенциальной яме, искажая истинное значение фототока, причем их количество тем больше, чем «длиннее» выдержка.

В отличие от светочувствительности фотопленки, которая не может изменяться от кадра к кадру, чувствительность цифровой камеры может настраиваться индивидуально для каждого кадра. Делается это путем усиления сигнала на выходе с матрицы, такая процедура чем-то сродни повороту регулятора громкости радиоприемника. В результате получается более высокое значение эквивалентной чувствительности.

Таким образом, пользователь может испортить снимок разноцветными пикселами при помощи двух способов - либо повысив эквивалентную чувствительность, либо выбрав «длинную» выдержку. Справедливости ради стоит сказать, что при длительном экспонировании шум фиксированного распределения все-таки менее заметен, чем при усилении сигнала с матрицы. В целом повышение эквивалентной чувствительности следует использовать только в тех случаях, когда фотоаппарат оборудован функцией шумоподавления методом «темного кадра», при этом камера, создавая «маску», следит за соответствием не только выдержки, но и эквивалентной чувствительности.

Динамический диапазон

Чтобы сенсор мог работать и в сумерках, и на ярком солнце, от каждого пиксела требуется довольно емкая потенциальная яма. Эта яма, с одной стороны, должна удержать минимальное количество электронов при слабой освещенности, а с другой - вместить большой заряд, получаемый при попадании на сенсор мощного светового потока. Следует помнить также, что кадр может содержать как ярко освещенные участки, так и глубокие тени, и желательно, чтобы все их оттенки отображались на сформированном сенсором изображении.

Способность сенсора обеспечивать качественное изображение при разных условиях освещения и сильной контрастности объектов съемки называется динамическим диапазоном (рис. 3.7).

ПРИМЕЧАНИЕ

    Динамический диапазон - величина, характеризующая способность ЭОП различать в изображении, отображаемом на его регистрирующей поверхности, самые темные тона от наиболее светлых. Чем шире динамический диапазон, тем большее количество оттенков будет присутствовать на снимке, а переходы между ними будут максимально соответствовать реальному изображению.

Рис. 3.7. Влияние динамического диапазона на качество кадра: а - широкий динамический диапазон, б - узкий динамический диапазон

Способность потенциальной ямы удерживать заряд определенной величины именуется глубиной потенциальной ямы (well depth), именно от этой характеристики зависит динамический диапазон сенсора.

Очевидно, что при съемке слабоосвещенных объектов на динамический диапазон влияет также порог чувствительности и, как следствие, величина темнового тока.

При создании сенсора перед разработчиками стоит задача минимизировать потери заряда ямы не только при его накоплении, но и при переносе, который сопровождается рассеиванием электронов, «отставших» от основной группы при ее перетекании под соседний электрод. Чем больше «отстающих», тем меньше эффективность переноса заряда (charge transfer efficiency), отображающая в процентах долю от исходного заряда, перенесенную в следующий пиксел матрицы.

В частности, если эффективность переноса составляет 98 %, то результат будет катастрофическим - при считывании заряда из центрального элемента матрицы с разрешением 1024 ??1024 до выхода сенсора доберется всего лишь (0,981024) ? 100 % = = 0,0000001 % от его начальной величины.

При большом разрешении эффективность переноса должна быть особенно высокой, так как «перетекание» заряда будет производиться особенно часто. Одновременно значительно увеличиваются временные затраты на считывание фототока, поскольку при большей скорости переноса сильно возрастают потери заряда.

Чтобы гарантировать разумные скорости считывания кадра, конструкция ПЗС-матрицы должна обеспечивать более глубокое расположение потенциальной ямы. При такой схеме количество «прилипших» к электродам переноса электронов значительно уменьшается, а эффективность переноса растет. Именно для расположения на большой глубине потенциальной ямы в конструкции ПЗС-элемента присутствует n-канал.

Если в матрице с разрешением 1024 ??1024 эффективность переноса заряда составляет 99,999 %, на выходе сенсора уровень заряда ПЗС-элемента составит 98,98 % от исходного. В сенсорах с более высоким разрешением требуется эффективность переноса заряда 99,99999 %, при этом полученный сигнал обеспечит динамический диапазон, для оцифровки которого необходим 10-битный АЦП (об оцифровке рассказано ниже).

Блюминг

Если количество электронов, образованных падающими на поверхность светочувствительного элемента фотонами, превышает максимальную глубину потенциальной ямы, заряд начинает «растекаться» по соседним элементам. При этом на фотографии наблюдаются белые пятна правильной формы, размер которых зависит от степени «засветки». Данное явление называется блюминг (от английского blooming - размывание).

Для предотвращения блюминга используется так называемый электронный дренаж (drain), обеспечивающий отвод избыточных электронов из потенциальной ямы. По методу реализации различают вертикальный и боковой дренаж - Vertical Overflow Drain (VOD) и Lateral Overflow Drain (LOD).

Рис. 3.8. Вертикальный электронный дренаж

Вертикальный дренаж осуществляется подачей потенциала на подложку ЭОП, причем его значение подбирается так, чтобы при достижении уровня переполнения «лишние» электроны стекали через подложку из потенциальной ямы (рис. 3.8). Побочный эффект - уменьшение глубины потенциальной ямы и, как следствие, сужение динамического диапазона светочувствительного элемента. Кроме того, данная система неприменима в матрицах с обратной засветкой.

При боковом дренаже сток электронов осуществляется в специальные шлюзы (gates) (рис. 3.9). В отличие от вертикального дренажа, глубина потенциальной ямы светочувствительного элемента при этом не меняется, но зато уменьшается светочувствительная площадь пиксела. Впрочем, применение микролинз несколько ослабляет данный негативный эффект.

Разумеется, использование дренажных устройств усложняет конструкцию ЭОП, однако вред изображению, наносимый блюмингом, значительно выше. Кроме того, без дренажа невозможна реализация электронного затвора.

Для удаления таких точек в большинстве современных камер служит специальное программное обеспечение. Его алгоритм сводится к поиску «залипших» пикселов и занесению их координат в служебную память фотоаппарата. В дальнейшем эти точки просто исключаются из процесса формирования изображения, а вместо них берется усредненное значение заряда соседних пикселов. При поиске «залипших» пикселов величина заряда каждого элемента матрицы сравнивается с эталонным значением, также хранящимся в служебной памяти камеры.

ПЗС или КМОП?

В КМОП-матрицах преобразование фотонов в заряд происходит таким же, как и в ПЗС-матрицах, образом. Отличие заключается в том, что преобразование заряда в напряжение посредством компонентов, именуемых обвязкой пиксела, осуществляется прямо внутри элемента матрицы.

ПРИМЕЧАНИЕ

    КМОП - аббревиатура, обозначающая технологию производства микросхем - «комплиментарных структур металл-оксид-полупроводник» (CMOS - complementary metal oxide semiconductor). Подавляющее большинство микроэлектронных компонентов производятся по данной технологии.
Для синхронизации применяются адресные шины столбцов и строк матрицы. При этом возможно считывание всей матрицы, столбца либо строки и даже отдельного элемента. Более того, отпадает необходимость в регистрах сдвига и управляющих микросхемах. Значительно сокращается также и энергопотребление.

В то время как процесс изготовления ЭОП на основе ПЗС достаточно сложен и требует специализированного оборудования, технология производства КМОП-матриц широко распространена. Практически любой завод радиоэлектронных изделий может в кратчайшие сроки наладить выпуск ЭОП такого типа. Этим определяется невысокая стоимость КМОП-сенсоров.

С момента появления КМОП-матрицы декларируются «наиболее перспективными ЭОП», однако ряд недостатков не позволяют этим устройствам полностью вытеснить ПЗС-сенсоры.

Во-первых, в каждом из элементов матрицы присутствуют преобразователь заряд-напряжение и компоненты, предназначенные для считывания напряжения. Как любые электронные устройства, эта обвязка при обработке сигнала добавляет к нему помехи, именуемые электронным шумом. Причем для каждого пиксела матрицы уровень электронного шума разный.

Второй минус КМОП-сенсоров вызван тем, что «обвязка» размещается вокруг пиксела, что приводит к малой площади (даже по сравнению с ПЗС-матрицами с буферизацией столбцов) светочувствительной области. Следствием этого является низкая чувствительность ЭОП данного типа.

Для борьбы с электронным шумом применяется технология «активных пикселов», разработанная агентством NASA. В матрицах, использующих эту технологию, напряжение, полученное после преобразования заряда, подается на вход усилителя, встроенного в каждый пиксел. Так снижается влияние электронного шума, подмешиваемого той частью «обвязки», которая отвечает за считывание сигнала. Однако при этом усложнение конструкции сенсора приводит к росту себестоимости и увеличению доли брака в производстве. Кроме того, сокращается и без того малая площадь светочувствительной области. Для увеличения чувствительности, как и в ПЗС-сенсорах с буферизацией столбцов, применяются микролинзы. Кроме того, непрерывно ведутся разработки по уменьшению размеров дополнительных компонентов.

Совокупность показателей КМОП-сенсоров является причиной того, что в любительских камерах они чаще встречаются в технике начального уровня - с невысоким разрешением, простой оптикой и, разумеется, привлекательной для покупателя ценой.

Основного успеха сенсоры данного типа достигли в профессиональных фотоаппаратах и студийных камерах. В этой технике используются матрицы с большими габаритами, поэтому площадь светочувствительной области значительно больше размеров «обвязки» каждого пиксела. Благодаря этому достигается высокая чувствительность сенсора. А чтобы расширить динамический диапазон, применяется ряд мер по уменьшению уровня электронного шума.

В целом, несмотря на стремительное завоевание КМОП-матрицами популярности среди профессиональной и студийной техники, вряд ли стоит надеяться на скорое исчезновение ПЗС-сенсоров из любительских фотокамер.

Размер матрицы
по диагонали

Порой среди характеристик фотоаппарата выделяется размер ПЗС-матрицы по диагонали, указываемый в дюймах. Это напрямую связано с размерами оптической системы - чем больше размеры ПЗС-матрицы, тем крупнее должен быть кадр, формируемый объективом. Чтобы достичь этого, требуется увеличить размеры оптических элементов и фокусное расстояние. Если же ПЗС-матрица все-таки больше изображения, генерируемого объективом, то в создании кадра используются не все элементы ЭОП, периферийные области матрицы оказываются невостребованными. Тем не менее в рекламных целях производители фотокамер не спешили уведомлять пользователей, что определенная доля мегапикселей оказывается «за кадром».

В профессиональных камерах, использующих стандартные объективы пленочных «зеркалок», чаще встречается обратная ситуация - когда создаваемая оптикой «картинка» больше ЭОП. Последнее вызвано тем, что размер матрицы, как правило, меньше кадра 35-мм фотопленки. Подробнее об этом, а также о коэффициенте фокусного расстояния будет рассказано в главе, посвященной профессиональным фотоаппаратам.

Размер матрицы влияет также на ее чувствительность. Чем больше площадь каждого элемента, тем больше света попадает на него, соответственно, возрастает чувствительность всего ЭОП. Большой размер пиксела подразумевает также «крупногабаритную» потенциальную яму, следовательно, - широкий динамический диапазон. Особенно это заметно в профессиональных моделях, ЭОП которых традиционно отличается большими габаритами, чувствительность достигает значений порядка ISO 6400 (!), а динамический диапазон требует АЦП с разрядностью 10–12-бит.

А вот в любительских камерах динамический диапазон довольствуется 8-10-битными АЦП, а чувствительность редко превышает ISO 800. Вызвано это особенностями конструкции данной техники. Дело в том, что у фирмы Sony практически нет конкурентов по части производства малогабаритных (1/3, 1/2 и 2/3 дюйма по диагонали) сенсоров для любительской техники. Чтобы добиться такого положения, разработчикам новых матриц высокого разрешения пришлось обеспечить почти полную совместимость с предыдущими моделями - как по габаритам, так и по интерфейсу. В результате производителям фототехники не приходилось заново создавать объектив и «электронную начинку» камеры.

Правда, при росте разрешения буферный регистр (а матрицы Sony изготовлены по схеме с буферизацией столбцов) начинает занимать все большую долю площади сенсора, в результате площадь светочувствительной области уменьшается (рис. 3.10).

Рис. 3.10. Уменьшение светочувствительной области ПЗС-матрицы при росте разрешения

При уменьшении габаритов пиксела, в свою очередь, уменьшается и глубина потенциальной ямы, что не лучшим образом влияет на динамический диапазон сенсора.

Аналого-цифровой преобразователь

Получив сигнал с усилителя, его необходимо перевести в понятный микропроцессору камеры формат. Для этого используется аналого-цифровой преобразователь (АЦП).

ПРИМЕЧАНИЕ

    АЦП, аналого-цифровой преобразователь (analog to digital convertor, ADC) - устройство, преобразующее аналоговый сигнал в последовательность цифр. Основной характеристикой является разрядность - количество дискретных уровней сигнала, распознаваемых и кодируемых АЦП. Чтобы вычислить количество уровней, достаточно возвести 2 в степень разрядности. Например, разрядность 8 битов обозначает, что преобразователь в состоянии определить 28 уровней сигнала и отобразить их в виде 256 различных значений.
Чем больше разрядность АЦП, тем (теоретически) большей глубины цвета (color depth) можно достигнуть.

ПРИМЕЧАНИЕ

    Глубина цвета - разрядность обработки цвета, описывающая максимальное количество цветовых оттенков, которое можно воспроизвести. Обычно выражается в битах, а количество оттенков вычисляется так же, как и количество уровней сигнала АЦП. К примеру, при 24-битной глубине цвета можно получить 16 777 216 оттенков цвета.
На практике глубина цвета кадра форматов JPEG либо TIFF, используемых при обработке и хранении изображений на компьютере, ограничена 24 битами (по 8 бит на каждый цветовой канал - синий, красный и зеленый). Так что применяемые в студийных, профессиональных и высококлассных любительских камерах АЦП с разрядностью 10, 12 и даже 16 бит (то есть глубиной цвета 30, 36 и 48 бит) на первый взгляд обладают некоторой избыточностью.

Дело в том, что динамический диапазон ЭОП в таких моделях достаточно широкий, и если фотоаппарат оборудован функцией сохранения кадра в нестандартном формате (30–48 битов), то при дальнейшей обработке на ПК есть возможность манипулировать с «лишними» битами. Поскольку неправильно рассчитанная экспозиция является наиболее распространенной (после неточной фокусировки) ошибкой, весьма кстати оказывается возможность ее корректировки с помощью «нижних» (в случае недодержки) либо «верхних» (при передержке) бит. Если же кадр был снят с правильными диафрагмой и выдержкой, то программное обеспечение в состоянии грамотно «сжать» 30–48 бит в стандартные 24. В этом случае народная мудрость: «много - не мало», абсолютно верна.

Однако следует помнить, что разрядность АЦП должна соответствовать динамическому диапазону ПЗС-матрицы. Понятно, что при узком динамическом диапазоне АЦП с большой разряд- ностью просто нечего будет распознавать. Поэтому фразы про «36-битный» и даже «48-битный» цвет, встречающиеся в описаниях большинства любительских фотоаппаратов, являются просто рекламой. Неплохим критерием, позволяющим определить истинность данных о глубине цвета, может служить размер матрицы по диагонали. Как показывает практика, даже 30-битный цвет требует как минимум матрицу с диагональю 2/3 дюйма.

Расчет цвета в ПЗС-матрицах

Поскольку ПЗС-элементы регистрируют яркость точек создаваемого объективом изображения, но никак не их цвет, используется цветовой синтез - процедура получения цветного снимка посредством обработки данных о каждом из основных цветов кадра.

ПРИМЕЧАНИЕ

    Основные цвета - цвета оптических излучений или красителей, используемые для создания цветных изображений. Различают основные цвета аддитивного и субтрактивного синтеза, то есть со сложением и вычитанием цветов.
Основные цвета аддитивного синтеза - цвета излучений. В трехцветном (RGB) аддитивном синтезе используются синий (blue - B), зеленый (green - G) и красный (red - R).

Такие основные цвета являются линейно независимыми, так как ни один из них нельзя получить оптическим смешением излучений двух других. Оптическим смешением синтезируют множество цветов, различающихся по цветовому тону, насыщенности и светлоте.

В субтрактивном синтезе используются цвета красителей. В ка-честве основных фигурируют голубой (cyan - C), пурпурный (magenta - M) и желтый (yellow - Y). Основной цвет субтрактивного синтеза называется дополнительным к основному цвету аддитивного синтеза, если красителем первого практически полностью поглощается излучение второго. Например, желтый цвет является дополнительным к синему, пурпурный - к зеленому, голубой (cyan) - к красному.

Аддитивный синтез является «родным» для компьютерных устройств, в первую очередь, для монитора. В нем изображение создается тремя лучами (RGB). А вот принтеры пользуются субтрактивным синтезом, причем в дополнение к CMY-цветам используется также черный, обозначаемый буквой K - blacK. Тео-ретически при смешивании голубого, пурпурного и желтого на белой бумаге в равной пропорции получается черный цвет. Однако в реальном технологическом процессе получение черного цвета путем смешивания трех основных цветов для бумаги неэффективно, поскольку невозможно произвести идеально чистые пурпурные, синие и желтые краски, поэтому цвет получается не чисто черным, а грязно-коричневым. Кроме того, на создание черного цвета с помощью модели CMY тратится в три раза больше краски. Поэтому при печати используется добавка дополнительного черного компонента цвета.

Следует помнить, что диапазон цветов, отображаемых с помощью цветовой модели CMY, меньше, чем множество цветов, генерируемых RGB-синтезом. Тем не менее обе модели применяются при формировании светофильтров для ПЗС-матриц. Данные светофильтры, располагаясь над светочувствительной областью каждого элемента сенсора, образуют своеобразную «мозаику» из пикселов. Поэтому, помимо терминов «чередование элементов» и «интерполяция цвета», часто используется определение «схема с мозаичным светофильтром» .

Рассмотрим, как формируется изображение с использованием так называемой Байеровской схемы размещения элементов. В ней применяется опорная группа из четырех элементов в форме квадрата, в которой светофильтры чередуются следующим образом - верхний ряд R–G, нижний ряд G–B. Однако последовательность эта чаще обозначается R–G–B–G (красный–зеленый–синий–зеленый), а использующая ее схема называется аддитивной Байеровской (рис. 3.11).

Рис. 3.11. Расположение светофильтров в аддитивной Байеровской схеме

«Лишние» «зеленые» элементы служат для более точной передачи яркости и контрастности изображения, что объясняется двумя обстоятельствами: во-первых, восприимчивостью человеческого зрения именно к этому цвету, а во-вторых, тем, что спектральная чувствительность ПЗС-матриц максимальна как раз в «зеленой» области спектра (рис. 3.12).

В результате получается три «мозаики» - по одной для каждого из цветовых каналов. Сложив их вместе, получаем четвертую «мозаику», в которой половина точек будет зеленой, четверть синей, а четверть - красной (рис. 3.13).

Рис. 3.13. Окончательная обработка изображения: а - изображение до обработки, б - изображение после обработки

Чтобы ликвидировать данный «эффект мозаики», необходимо восстановить истинный цвет во всех точках изображения. Для этого используется алгоритм интерполяции цвета, основная суть которого сводится к следующему. Например, там, где установлен пиксел с зеленым светофильтром, мы точно знаем только о яркости зеленого цвета. Но среди соседних точек есть пара синего и пара красного цвета, поэтому возможно определить среднее значение каждого из этих цветов, которые будут соответствовать нашему пикселу. Сложив их вместе с уже известной зеленой составляющей, получаем значение исходного цвета в данной точке.

Регулярная структура размещения элементов в некоторых случаях приводит к появлению муара. Возможность появления данного искажения зависит от сложности алгоритма, ответственного за расчет цвета. Если при расчете каждого пиксела используется сплайн-интерполяция с учетом элементов, расположенных на расстоянии 10 и более точек, вероятность возникновения муара очень мала. В идеале для расчета каждой точки желательно использовать информацию обо всех элементах матрицы данного цвета. Разумеется, что для таких интенсивных расчетов требуются высокопроизводительные микропроцессоры и сверхбольшие объемы ОЗУ.

Рис. 3.14. Модифицированные Байеровские схемы

Несколько меньших ресурсов требуют модифицированные Байе-ровские схемы, в которых опорная группа состоит не из четырех, а из 12 либо 24 пикселов (рис. 3.14). Такое псевдо-случайное расположение элементов обеспечивает меньшую склонность к «диагональному» муару, однако при восстановлении цвета программному обеспечению необходимо «помнить» схему размещения опорных групп. Вызвано это тем, что у некоторых «зеленых» пикселов окружение из пар «синих» и «красных» соседей организовано особым образом. Они не сгруппированы по вертикальной либо горизонтальной оси, а находятся «один слева, второй снизу» или же «один справа, другой сверху». В результате растет сложность вычислений и объем используемой памяти.

Следует также отметить, что некоторые производители фотоаппаратов используют субтрактивную Байеровскую схему, в которой применяется цветовая модель CMY (голубой–пурпурный–желтый) и CMYG (голубой–пурпурный–желтый–зеленый) (рис. 3.15). Использование «чужого» для субтрактивного синтеза зеленого цвета обусловлено теми же, что и в аддитивной схеме, причинами.

Рис. 3.15. Расположение светофильтров в субтрактивной Байеровской схеме

Впрочем, в аддитивной схеме зачастую также встречаются «посторонние» цвета, в частности, нередко половина «зеленых» элементов заменяются сине-зелеными, которые отличаются более темным оттенком, нежели голубой (cyan) цвет.

Чтобы понять причины появления субтрактивных схем, необходимо вспомнить, каким образом создаются светофильтры над пикселами. Тонкие пленки, наносимые на элементы матрицы, образуются CMY-красителями. Например, красный - комбинация пурпурного и желтого красителей, синий - пурпурного и голубого (cyan), зеленый - желтого и голубого. Используя только один слой красителя вместо двух, можно улучшить светопроницаемость светофильтра и повысить чувствительность матрицы. Основное препятствие на пути распространения схем CMY и CMYG - некоторая сложность расчета цвета. Достаточно вспомнить диапазон цветов, генерируемых аддитивным и субтрактивным синтезами - с помощью модели RGB оттенков генерируется больше.

Помимо нехватки данных о цвете (75 % для синей и красной составляющих снимка), при восстановлении полноцветного изображения дополнительная сложность вызвана тем, что спектральная чувствительность матрицы отнюдь не равномерна. Поскольку «синий» и «красный» диапазоны попадают на области спада спектральной чувствительности, наибольшие ошибки связаны с пикселами, оснащенными светофильтрами как раз этих цветов. Именно поэтому в шуме фиксированного распределения встречаются в основном синие и красные точки.

Баланс белого цвета

За исключением вышеперечисленных проблем, алгоритм интерполяции цвета справляется с задачей правильной цветопередачи. Однако существуют обстоятельства, затрудняющие этот процесс, в частности, отклонения цветовой температуры - величины, характеризующей спектральный состав излучения источника света.

ПРИМЕЧАНИЕ

    Цветовая температура - температура абсолютно черного тела (то есть объекта, полностью поглощающего падающее на него излучение), при которой в его излучении превалирует свет с той или иной длиной волны. Указывается в кельвинах (К).
Чем меньше цветовая температура, тем больше красноватых тонов содержится в спектре излучения. Для высокой цветовой температуры характерны синеватые оттенки.

Яркий солнечный свет воспринимается человеком как наиболее естественный. Как ни странно, свет, генерируемый лампами накаливания, кажется более «теплым», то есть содержит больше красных тонов, хотя его цветовая температура ниже. В то же время флуоресцентное освещение отличается избытком синих тонов и поэтому кажется «холодным», несмотря на то, что его цветовая температура выше.

В процессе фотографирования пользователь не замечает отклонений цветовой температуры, так как подсознательно «подстраи-вает» свое восприятие под условия съемки. Однако при просмотре кадров смещение цветов отчетливо проявляется - фотографии, отснятые внутри помещения, имеют уклон в сторону «теплых» либо «холодных» тонов (в зависимости от типа освещения).

Для сведения к минимуму этого негативного явления используется предварительная настройка баланса белого цвета.

ПРИМЕЧАНИЕ

    Баланс белого - процедура, выполняемая встроенным программным обеспечением фотоаппарата при создании файла с изображением. Заключается в приведении цветовой гаммы снимка к наиболее естественному для человеческого зрения виду.
В профессиональных камерах специальный датчик определяет среднюю длину волны света, попадающего в объектив (иногда этот датчик вынесен на переднюю стенку корпуса), и все дальнейшие расчеты цвета ведутся с учетом этого значения. В любительских камерах вычисляются средние значения для каждого из основных цветов при его максимальной, средней и минимальной яркости, затем выполняется необходимая корректировка.

В большинстве случаев автоматика камеры справляется с расчетом цветового баланса изображения. Однако в некоторых случаях требуется определенная «подсказка» со стороны пользователя, то есть корректировка баланса белого. Она заключается в том, что фотограф предварительно указывает условия съемки, а дальнейшие расчеты цветовой температуры предполагаемого источника света ведутся с учетом этих данных. Наиболее распространены следующие предустановленные значения:

  • «солнечно» (Sunny) - съемка на улице в ясный солнечный день;
  • «облачно» (Cloudy) - съемка на улице при облачной погоде (уменьшенный уровень ультрафиолетовых лучей по сравнению с предыдущим пунктом);
  • «лампы накаливания» (Incandescent) - съемка в помещении, освещение лампами накаливания;
  • «флуоресцентный свет» (Fluorescent) - съемка в помещении, освещение флуоресцентными лампами.
Альтернативный вариант, который чаще встречается в полупрофессиональных и профессиональных камерах, - указывание цветовой температуры источника освещения в кельвинах, как правило, от 3000 до 7500 К.

В ряде случаев используется ручная корректировка баланса белого, когда пользователь, включив ЖК-дисплей в режиме электронного видоискателя, с помощью управляющих кнопок «на глазок» настраивает цветовую гамму.

Однако при смешанном освещении, например съемке в помещении, освещаемом одновременно сквозь окна солнечными лучами и с потолка лампами накаливания, даже предустановленные значения не могут помочь. В таком случае для корректной цветопередачи некоторые камеры снабжены функцией баланса белого по эталону. При использовании этой функции пользователь наводит камеру на эталон белого, которым может служить обычный лист бумаги, и фиксирует это значение - либо выбором соответствующего пункта меню, либо нажатием специально выделенной кнопки камеры. Чаще всего эта функция применяется при съемке в студии, когда фотограф имеет достаточно времени на подготовку к фотографированию.

Еще одна полезная функция - серия для баланса белого - по-следовательность кадров, каждый из которых снят со своей цветовой температурой источника света. В чем-то эта функция похожа на эксповилку - пользователь указывает диапазон и шаг изменения цветовой температуры и затем выбирает из серии отснятых кадров тот, цветовая гамма которого выглядит наиболее естественной.

Интерполяция пикселов

Интересно, что в некоторых случаях при перемножении количества точек по горизонтали и вертикали, указанного для снимка, можно получить число, большее количества элементов ПЗС-матрицы. В данном случае имеет место обычный рекламный трюк. Когда качества матрицы не хватает на «полноценное» разрешение, оно достигается путем интерполяции разрешения - вставки столбцов и строк, полученных не путем регистрации реального изображения, а в результате математических расчетов. Разумеется, такое же «улучшение» снимка может быть достигнуто с помощью программного обеспечения для обработки изображения на компьютере. Поэтому всегда следует различать количество элементов ПЗС-матрицы и так называемое разрешение файла - о реальном качестве кадра можно судить только по первому значению.

Фирмой FujiFilm в 2000 году была разработана SuperCCD - ПЗС-матрица с элементами октагональной формы (в отличие от обычных сенсоров с прямоугольными пикселами) (рис. 3.16).

Рис. 3.16. Расположение светочувствительных элементов и буферных регистров: а - в обычной матрице, б - в матрице SuperCCD

При этом каждые четыре пиксела (два зеленых, синий и красный) располагались как бы внутри квадрата, развернутого на 45?. Количество горизонтальных строк определялось пикселами в верхнем и нижнем углах квадрата, количество вертикальных - элементами в левом и правом углах (рис. 3.17).

Рис. 3.17. Процесс обработки кадра в матрице SuperCCD

Поскольку в файле точки не могут так располагаться, требовалось программно «развернуть» каждый такой квадрат. В результате этой операции за счет дополнительных горизонтальных и вертикальных строк, образуемых точками в левом/правом и верхнем/нижнем углах квадрата, количество точек изображения удваивалось. После этого компанией FujiFilm была проведена обширная рекламная кампания, в процессе которой провозглашалось, что переход на новую матрицу позволит получать изображения с разрешением выше в 2 раза. Однако, поскольку дополнительные пикселы образуются на основе интерполяции, с таким же успехом подобную операцию можно провести и с обычной матрицей.

Возможна лишь единственная ситуация, при которой разрешение SuperCCD будет реально больше. Для этого детали изображения, созданного оптической системой, должны быть меньше расстояния между строками ЭОП. Кроме того, данные детали изображения должны попадать как раз между строками, то есть состоять из строго вертикальных и горизонтальных линий. В этом случае матрица FujiFilm за счет нестандартного расположения элементов может «уловить» промежуточные линии. Большинство тестовых изображений, рассчитанных на измерение разрешения камер, состоит как раз из таких линий, поэтому ожидаемый эффект наблюдался.

В то же время если эти же детали изображения будут ориентированы по диагонали, то обычная матрица их «увидит», а вот SuperCCD «пропустит». Причем большинство реальных объектов содержит как раз наклонные детали. Но человеческое зрение в первую очередь выделяет вертикальные и горизонтальные линии, и именно на эту особенность восприятия и было ориентировано расположение пикселов SuperCCD.

В определенном смысле качество кадра улучшалось - в первую очередь, за счет большего размера элементов реально возросла чувствительность. Однако фирмой FujiFilm анонсировалась модель FinePix 4700 с разрешением файла 4,7 мегапиксела, при этом количество элементов SuperCCD матрицы составляло 2,3 мегапиксела. Возникновение этой модели было своевременным, поскольку остальные производители задерживались с выпуском настоящих трехмегапиксельных камер. С появлением фотоаппаратов с ПЗС-матрицей из 3 мегапикселов стало возможным сравнить получаемые кадры. Выяснилось, что улучшение реальных, а не тестовых изображений по сравнению с «обычной» ПЗС-матрицей того же разрешения составляет 20–30 %, в то время как трехмегапиксельные камеры обеспечивали рост качества любых изображений в 1,5 раза.

ВНИМАНИЕ

    Какими бы ни были форма и размещение элементов матрицы, ее настоящее разрешение зависит только от количества пикселов.

Многослойные матрицы

В феврале 2002 года фирма Foveon объявила о создании сенсора принципиально нового типа. Его появление должно было стать таким же технологическим прорывом, каким в свое время стала разработка ПЗС-матриц с маской Байера, так как в новой КМОП-матрице Foveon X3 светофильтры не используются в принципе.

Разделение изображения на основные цвета происходит за счет того, что коэффициент поглощения светового излучения зависит от его длины волны, поэтому фотоны «разного цвета» проникают в слой кремния на разную глубину. Например, «синие волны» обладают наименьшей проникающей способностью, а «красные» - наибольшей. В сенсоре Foveon светочувствительный элемент каждого пиксела состоит из трех слоев (рис. 3.18).

Рис. 3.18. Структура матрицы Foveon X3

Толщина этих слоев рассчитана так, что они пропускают лучи с определенной длиной волны. При этом в самом нижнем слое поглощаются фотоны с «красной» длиной волны, в среднем регистрируются «зеленые» фотоны, а в самом верхнем - «синие». Образующиеся при этом электроны и «дырки» накапливаются в трех потенциальных ямах - по одной на каждый слой. Таким образом, для любого из пикселов матрицы есть данные по каждому из цветовых диапазонов. Это позволяет отказаться от схемы Байера и связанных с ней потерь данных о цвете.

Но как у каждой новой технологии, у этой схемы есть ряд недостатков. Вот лишь некоторые из них. Ранее было описано негативное влияние блюминга на качество кадра, а также сложности, возникающие при нейтрализации этого эффекта. В многослойных матрицах блюминг становится «трехмерным» - избыточный заряд может перетекать не только в соседние пикселы, но и в «чужие» слои. При этом вертикальный электронный дренаж практически невозможен, а реализация бокового дренажа приводит к значительному уменьшению площади светочувствительной области.

При съемке с максимально открытой диафрагмой увеличивается процент лучей, падающих на поверхность сенсора под большим углом. Даже в обычных матрицах данная проблема требует применения непрозрачной решетки либо микролинз. В многослойных ЭОП преломление света на стыке слоев матрицы может привести к проникновению в «чужой» слой фотонов, попавших в пиксел под большим углом.

Следует помнить, что при распределении фотонов по слоям часть их неизбежно будет поглощена при переходе из одного слоя в другой. В результате чувствительность матрицы ослабляется.

Однако предположим, что разработчикам каким-то образом удалось разрешить все вышеперечисленные проблемы. Означает ли это, что многослойные матрицы при этом раз и навсегда заменят сенсоры «классической» конструкции? Вряд ли.

При одинаковом разрешении и равных габаритах потенциальные ямы пикселов матриц, построенных по Байеровской схеме, всегда будут обладать большей глубиной, чем у «слоеных» сенсоров. Соответственно, шире будет и динамический диапазон. Человеческий глаз устроен таким образом, что яркость для него важнее, чем цвет. И если кадр идеален по цветопередаче, но все освещенные участки представляют собой белые пятна, а тени - черные, то такое изображение никто не назовет удачным снимком - ни профессионал, ни любитель.

Основные производители

В процессе эволюции разрешение цифровых фотокамер увеличилось в несколько раз. Поэтому большое количество производителей ЭОП, изделия которых использовались в ранних моделях фотоаппаратов, в итоге сильно сократилось. Кроме увеличения разрешения на процесс «естественного отбора» влияли и другие причины. Помимо уже рассмотренных характеристик (чувствительность, динамический диапазон и т. д.), для проектировщиков камеры важны также уровень энергопотребления ЭОП и совместимость с существующей элементной базой, а для производителя сенсора - процент брака и себестоимость устройств.

На данный момент можно выделить двух крупнейших производителей ПЗС-матриц для профессиональной и студийной техники - Eastman Kodak в США и Philips в Европе.

Заслугой разработчиков Kodak является внедрение бокового антиблюмингового дренажа в полнокадровых матрицах, позволившего значительно увеличить динамический диапазон ЭОП по сравнению с сенсорами, в которых был применен вертикальный дренаж. В матрицах, изготовленных по технологии BluePlus, электрод, расположенный над светочувствительной областью пиксела, изготавливался на основе оксида индия и диоксида олова. За счет этого значительно повышался коэффициент пропускания электрода, в итоге резко выросла чувствительность сенсора, особенно в традиционно «трудных» для ЭОП «синей» и «фиолетовой» областях спектра.

Всю продукцию Kodak можно разделить на три большие категории:

  • ПЗС-матрицы для студийной и профессиональной техники;
  • ПЗС-линейки для студийных сканирующих приставок к крупноформатным фотоаппаратам;
  • ПЗС-матрицы и КМОП-сенсоры для любительских фотокамер.
Сенсоры для любительских моделей используются, за редким исключением, только в фотоаппаратах Kodak. Зато матрицы, предназначенные для студийных камер, применяются практически всеми производителями этой категории. Последняя разработка фирмы - сенсор с разрешением 22 мегапиксела.

Голландским концерном Philips была сделана попытка минимизировать себестоимость ПЗС-матриц с помощью оригинальной технологии Building Block. При обычном производстве ПЗС-матрица высокого разрешения изготавливается единым блоком и при браке потери велики. Кроме того, максимальный размер ЭОП ограничивается возможностями оборудования. В противоположность этому, методика Building Block (буквально - кирпичи), разработанная Philips, основана на использовании «кирпичиков», состоящих из модулей размером 1000 ??1000 пикселов. Объединяя данные «кирпичики», можно построить сенсор практически неограниченного разрешения. При этом в случае обнаружения дефекта в одном из модулей его можно легко заменить. Таким образом, себестоимость изделия значительно ниже.

Наибольшей популярностью пользовалась шестимегапиксельная матрица FTF 3020 (36 ??24 мм), применявшаяся в большинстве моделей студийных камер. Из новых сенсоров перспективным считается 11-мегапиксельный ЭОП, тоже созданный по технологии Building Block. Его мегапиксельные «кирпичики» по габаритам меньше прежних модулей, поэтому размеры новой матрицы такие же, как и у шестимегапиксельной модели. Благодаря этому студийные фотоаппараты, использовавшие FTF 3020, легко можно оборудовать новым сенсором.

Среди поставщиков сенсоров для любительской техники лидируют японские фирмы FujiFilm и Sony. В конце 2001 года Fuji анонсировала SuperCCD третьего поколения. К отличительным особенностям этой матрицы относится возможность суммировать заряды четырех соседних пикселов одного цвета и за счет этого увеличивать чувствительность. Разумеется, что при этом разрешение кадра уменьшается в два раза как по вертикали, так и по горизонтали.

Четвертое поколение матриц SuperCCD, появившееся в начале 2003 года, помимо моделей с высоким разрешением (HR, High Resolution) включало в себя сенсоры с расширенным динамическим диапазоном (SR, Super Dynamic Range). В матрицах SuperCCD SR каждый пиксел под микролинзой содержал два светочувствительных элемента (каждый со своей потенциальной ямой) различной чувствительности. Элемент, у которого площадь светочувствительной области была больше, быстрее «переполнялся» и служил для регистрации слабоосвещенных деталей изображения. Меньший по площади элемент не так интенсивно реагировал на свет и предназначался для ярких объектов. Сумма предельных зарядов обеих ям представляла собой максимально освещенный пиксел. Поскольку меньший элемент обладал некоторой «инертностью», даже при переполнении ямы большего элемента существовала возможность получения полезной информации.

Однако недостатки схемы перевесили ее преимущества. В частности, «антиблюминговые» меры усложняются тем, что характеристики потенциалов ям большого и маленького элементов заметно различаются - так же, как и потенциалы вертикального дренажа. Элементы пиксела расположены тесно, поэтому высок риск «вытягивания» электронов из чужой ямы. В свою очередь, боковой дренаж в два раза увеличивает потери площади светочувствительной области.

Впрочем, даже при максимальной оптимизации дренажа особых преимуществ у двухэлементного пиксела нет. Ведь в любом случае суммарная глубина потенциальных ям обоих элементов меньше, чем глубина ямы обычного элемента, занимающего такую же площадь. Как показывает опыт тестирования фотоаппарата FujiFilm FinePix F700, снабженного матрицей SuperCCD SR, его динамический диапазон заметно уступает камерам, оснащенным сенсорами обычного типа.

Таким образом, основной особенностью матриц FujiFilm яв-ляются нестандартная форма и расположение элементов, в то же время реальных плюсов данные решения не продемонст- рировали. В результате матрицы этой фирмы, предназначен- ные для любительской техники, применяются только в фото- аппаратах FujiFilm. С другой стороны, ассортимент сенсоров SuperCCD довольно широк и включает в себя разработки как для профессиональной, так и для студийной техники, в частности модель с габаритами 52 x 37 мм и разрешением 20,8 мегапиксела.

Корпорация Sony с самого начала ориентировалась исключительно на рынок техники, предназначенной для массового потребителя. При этом разработчикам данной фирмы удалось внедрить ряд решений, благодаря которым качество кадров значительно улучшилось.

Одной из основных инноваций была технология HAD - Hole-Accumulation Diode. В матрицах HAD носителями информации о заряде пиксела были не электроны, а дырки. При этом отпадала необходимость в полисиликоновом электроде над светочувствительной частью пиксела и значительно увеличивалась чувствительность сенсора, особенно в коротковолновой части спектра. Кроме того, размещение поглощающего «дырки» слоя у поверхности матрицы уменьшало тепловой шум.

Чтобы уловить максимальное количество света, попадающего на микролинзу, разработчики Sony в матрице New Structure CCD использовали дополнительный оптический элемент. Расположенная непосредственно над светочувствительным элементом, внутренняя линза корректировала лучи, входящие под большими углами.

Ассортимент ПЗС-матриц Sony очень велик, причем с увеличением разрешения размер и интерфейсные разъемы сенсора не изменяются, что позволяет при разработке нового фотоаппарата использовать прежнюю оптику и корпус.

С появлением в модельном ряде матрицы ICX413 Sony заняла соответствующую нишу на рынке профессиональных камер. При диагонали 28,4 мм размеры сенсора (23,4 x 15,6 мм) соответствуют кадру пленки формата APS, поэтому он идеально подходит для использования в моделях, создаваемых на базе пленочных «зеркалок». В результате эту шестимегапиксельную матрицу выбрали Nikon и Pentax для своих профессиональных моделей D-100 и *ist D.

Значительных успехов в разработке КМОП-матриц для профессиональных камер добился концерн Canon. Размер сенсора был увеличен до габаритов кадра APS, в результате возросло отношение светочувствительной части пиксела к «обвязке» и, как следствие, значительно увеличилась чувствительность.

Кроме того, в состав компонентов каждого пиксела был включен своеобразный «фильтр», который замерял уровень электронного шума, генерируемого «обвязкой» в нерабочем состоянии (технология BASIS - BAse- Store-type Image Sensor). При съемке «фильтр» каждого элемента автоматически «вычитал» этот шум из сигнала, в результате влияние неравномерно распределенных по матрице электронных помех удалось снизить.

Вслед за Canon к самостоятельной разработке сенсоров приступил его вечный конкурент - концерн Nikon. Сенсор, изготовленный по технологии LBCAST (Lateral Buried Charge Accumulator and Sensing Transistor array), что переводится как «массив с расположенными бок о бок накопителем заряда и светочувствительным транзистором». В нем используются элементы JFET (Junction Field Effect Transistor), то есть полевые транзисторы с управляющим p-n-переходом, в то время как в КМОП-матрицах применяются элементы MOSFET (metal-oxide-semiconductor field-effect transistor) - полевые транзисторы со структурой металл-оксид-полупроводник. В то же время ряд характеристик роднит новый сенсор именно с КМОП-матрицами, например возможность считывания данных отдельного пиксела и низкое энергопотребление. Есть и собственные отличительные черты, такие как отсутствие электронного затвора, низкий уровень шумов и очень высокая скорость считывания кадра. Благодаря двум последним особенностям новый сенсор нашел применение в профессиональной камере высшей категории Nikon D2H.

Лидирующие позиции в области разработки КМОП-матриц занимает бельгийская фирма FillFactory. Она была основана в 1999 году, но разработками КМОП-матриц занималась еще с 1987 года, будучи подразделением IMEC, Европейского независимого центра микроэлектронных технологий. В итоге в стенах FillFactory появился ряд интересных и эффективных решений, улучшивших показатели КМОП-сенсоров.

В первую очередь удалось значительно увеличить светочувствительную область пиксела. В обычных КМОП-матрицах фотоны «выбивают» электроны на всей поверхности пиксела. Только вот эти «фотоэлектроны» (термин ненаучный, но иногда в оптоэлектронике применяемый) притягиваются либо «обвязкой» (расположенной, кстати, на поверхности матрицы), либо подложкой сенсора. Поэтому «фотоэлектроны», генерируемые поверхностью вокруг светочувствительной области элемента (а это более 70 % всей площади пиксела), в процессе создания заряда никоим образом не участвуют.

Специалисты FillFactory предложили простое и гениальное решение.

Благодаря генерируемому электростатическому барьеру «фотоэлектроны», генерируемые под «обвязкой», не поглощаются ни «обвязкой», ни подложкой, а «всасываются» потенциальной ямой фотоэлемента. Процесс «всасывания» не столь уж и длителен (от 10 до 50 наносекунд), поэтому тепловой шум (обычно заметен при «длинных» выдержках на всех типах сенсоров) практически отсутствует. А вот чувствительность сенсора возрастает в несколько раз, при этом нет необходимости использовать матрицы больших габаритов. Следовательно, данная технология может быть использована и в любительской технике.

Динамический диапазон КМОП-сенсора можно расширить, используя еще одну из наработок FillFactory - нелинейный режим накопления заряда. Для реализации этого режима в «обвязку» пиксела добавлены элементы, которые при достижении определенного уровня заряда в потенциальной яме переключают пиксел в состояние «насыщения». В этом состоянии «фотоэлектроны» накапливаются в потенциальной яме менее интенсивно, уменьшая риск ее переполнения.

Благодаря данной методике происходит адаптивное сжатие динамического диапазона кадра - светлые участки не выглядят «засвеченными», а темные - «недодержанными». Кроме того, не нужна высокая разрядность АЦП, уменьшается также размер кадров.

Разработанные FillFactory КМОП-сенсоры нашли применение как в студийных (Leaf C-Most, Leaf Valeo), так и в профессиональных (Kodak DCS Pro 14n) фотоаппаратах. Возможно, что в недалеком будущем КМОП-матрицы этой фирмы будут использоваться и в любительской технике.

Вендоры сейчас предлагают огромный выбор камер для видеонаблюдения. Модели отличаются не только общими для всех камер параметрами - фокусным расстоянием, углом обзора, светочувствительностью и т. д.,- но и различными фирменными "фишками", которыми каждый производитель стремится оснастить свои устройства.

Поэтому зачастую краткое описание характеристик камеры для видеонаблюдения представляет собой пугающий перечень непонятных терминов, к примеру: 1/2.8" 2.4MP CMOS, 25/30fps, OSD Menu, DWDR, ICR, AWB, AGC, BLC, 3DNR, Smart IR, IP67, 0.05 Lux и это еще далеко не все.

В предыдущей статье мы остановились на видеостандартах и классификации камер в зависимости от них . Сегодня мы разберем основные характеристики камер для видеонаблюдения и расшифровку обозначений специальных технологий, используемых для улучшения качества видеосигнала:

  1. Фокусное расстояние и угол обзора
  2. Апертура (число F) или светосила объектива
  3. Регулировка диафрагмы (автодиафрагма)
  4. Электронный затвор (AES, скорость затвора, выдержка)
  5. Чувствительность (светочувствительность, минимальное освещение)
  6. Классы защиты IK (Vandal-proof, антивандальные) и IP (от влаги и пыли)

Тип матрицы (CCD ПЗС, CMOS КМОП)

Существует 2 типа матриц камер видеонаблюдения: CCD (на русском - ПЗС) и CMOS (на русском - КМОП). Они отличаются как устройством, так и принципом действия.

CCD CMOS
Последовательное считывание из всех ячеек матрицы Произвольное считывание из ячеек матрицы, что уменьшает риск смиринга - появления вертикального размазывания точечных источников света (ламп, фонарей)
Низкий уровень шумов Высокий уровень шума из-за так называемых темповых токов
Высокая динамическая чувствительность (больше подходят для съемки движущихся объектов) Эффект "бегущего затвора" - при съемке быстро движущихся объектов могут возникать горизонтальные полосы, искажения картинки
Кристалл используется только для размещения светочувствительных элементов, остальные микросхемы нужно размещать отдельно, что увеличивает размеры и стоимость камеры Все микросхемы можно расположить на одном кристалле, что делает производство камер с CMOS-матрицами простым и недорогим
Благодаря использованию площади матрицы только под светочувствительные элементы, возрастает эффективность ее использования - она приближается к 100% Низкое энергопотребление (почти в 100 раз меньше, чем у ПЗС матриц)
Дорогое и сложное производство Быстродействие

Долгое время считалось, что матрица CCD дает гораздо более качественное изображение, чем CMOS. Однако современные матрицы КМОП зачастую практически ничем не уступают ПЗС, особенно в том случае, если к системе видеонаблюдения нет слишком высоких требований.

Размер матрицы

Обозначает размер матрицы по диагонали в дюймах и пишется в виде дроби: 1/3", 1/2", 1/4" и т. д.

Стандартно считается, что чем больше размер матрицы, тем лучше: меньше шумов, четче картинка, больше угол обзора. Однако на самом деле лучшее качество изображения обеспечивает не размер матрицы, а размер ее отдельной ячейки или пикселя - чем он больше, тем лучше. Поэтому при выборе камеры для видеонаблюдения нужно рассматривать размер матрицы вместе с количеством пикселей.

Если матрицы с размерами 1/3" и 1/4" имеют одинаковое количество пикселей, то в этом случае матрица 1/3", естественно, будет давать лучшее изображение. А вот если на ней пикселей больше, то нужно брать в руки калькулятор и подсчитывать примерный размер пикселя.

К примеру, из приведенных ниже расчетов размера ячейки матрицы можно увидеть, что во многих случаях размер пикселя на матрице 1/4" оказывается большим, чем на матрице 1/3", а значит, видеоизображение с 1/4" , хотя она и меньше по размеру, будет лучше.

Размер матрицы Количество пикселей (млн) Размер ячейки (мкм)
1/6 0.8 2,30
1/3 3,1 2,35
1/3,4 2,2 2,30
1/3,6 2,1 2,40
1/3,4 2,23 2,45
1/4 1,55 2,50
1 / 4,7 1,07 2,50
1/4 1,33 2,70
1/4 1,2 2,80
1/6 0,54 2,84
1 / 3,6 1,33 3,00
1/3,8 1,02 3,30
1/4 0,8 3,50
1/4 0,45 4,60

Фокусное расстояние и угол обзора

Эти параметры имеют большое значение при выборе камеры для видеонаблюдения, и они тесно связаны между собой. Фактически, фокусное расстояние объектива (часто обозначается f)- это расстояние между линзой и матрицей.

На практике же фокусное расстояние определяет угол и дальность обзора камеры:

  • чем меньше фокусное расстояние, тем шире угол обзора и тем меньше деталей можно рассмотреть на объектах, расположенных вдали;
  • чем больше фокусное расстояние, тем уже угол обзора видеокамеры и тем детальнее изображение удаленных объектов.


Если вам необходим общий обзор какой-то площади, и вы хотите использовать для этого как можно меньше камер - покупайте камеру с небольшим фокусным расстоянием и, соответственно, широким углом обзора.

А вот на тех участках, где требуется детальное наблюдение за сравнительно небольшой площадью, лучше поставить камеру с увеличенным фокусным расстоянием, направив ее на объект наблюдения. Это часто используется на кассах супермаркетов и банков, где нужно видеть номинал купюр и другие подробности расчетов, а также на въезде на автостоянки и прочие площадки, где необходимо различать автомобильный номер на большом расстоянии.


Самое распространенное фокусное расстояние - 3,6 мм. Оно примерно соответствует углу обзора человеческого глаза. Камеры с таким фокусным расстоянием используются для видеонаблюдения в небольших помещениях.

В представленной ниже таблице - информация и взаимосвязи фокусного расстояния, угла обзора, дистанции распознавания и т. д. для наиболее распространенных фокусов. Цифры примерные, так как зависят не только от фокусного расстояния, но и других параметров оптики камеры.

В зависимости от ширины угла обзора камеры для видеонаблюдения принято делить на:

  • обычные (угол обзора 30°-70°);
  • широкоугольные (угол обзора примерно от 70°);
  • длиннофокусные (угол обзора менее 30°).

Буквой F, только обычно заглавной, обозначается также светосила объектива - поэтому при чтении характеристик обращайте внимание - в каком контексте употребляется параметр.

Тип объектива

Фиксированный (монофокальный) объектив - самый простой и недорогой. Фокусное расстояние в нем зафиксировано, и его нельзя поменять.

В варифокальных (вариофокальных) объективах можно менять фокусное расстояние. Его настройка производится вручную, обычно один раз, когда камера устанавливается на место съемки, а в дальнейшем - по необходимости.

Трансфакторные или зум-объективы также предоставляют возможность менять фокусное расстояние, но удаленно, в любой момент времени. Изменение фокусного расстояния производится с помощью электропривода, поэтому их также называют моторизированными объективами.

"Рыбий глаз" (fisheye, фишай) или панорамный объектив позволяет установить всего одну камеру и достичь при этом 360° обзора.


Конечно, в результате получаемое изображение имеет эффект "пузыря" - прямые линии искривлены, однако в большинстве случаев камеры с такими объективами позволяют разделять одно общее панорамное изображение на несколько отдельных, с корректировкой под привычное человеческому глазу восприятие.

Pinhole-объективы позволяют вести скрытое видеонаблюдение, благодаря своему миниатюрному размеру. Фактически, пинхол-камера не имеет объектива, а лишь миниатюрное отверстие вместо него. В Украине использование скрытого видеонаблюдения серьезно ограничено, как и сбыт устройств для него.

Это наиболее распространенные типы объектива. Но если вдаваться более глубоко, объективы разделяются также по другим параметрам:

Апертура (число F) или светосила объектива

Определяет способность камеры снимать качественную картинку в условиях плохой освещенности. Чем больше число F, тем менее открыта диафрагма и тем большая освещенность требуется камере. Чем меньше апертура, тем больше открыта диафрагма, а видеокамера может давать четкое изображение даже при плохом освещении.

Буквой f (обычно строчной) обозначается также фокусное расстояние, поэтому при чтении характеристик обращайте внимание - в каком контексте употребляется параметр. К примеру, на картинке выше апертура обозначена маленькой f.

Крепление объектива

Для крепления объектива к видеокамере существует 3 вида креплений: C, CS, M12.

  • Крепление C сейчас используется редко. Объективы C можно установить на камеру с креплением CS при помощи специального кольца.
  • Крепление CS - наиболее распространенный тип. Объективы CS несовместимы с камерами C.
  • Крепление M12 используется для объективов небольшого размера.

Регулировка диафрагмы (автодиафрагма), АРД, ARD

Диафрагма отвечает за поступление света на матрицу: при усиленном потоке света она сужается, препятствуя таким образом засвечиванию картинки, а при недостаточном освещении, наоборот, раскрывается, чтобы на матрицу попадало больше света.

Различают две большие группы камер: с фиксированной диафрагмой (сюда же можно отнести камеры вообще без нее) и с регулируемой .

Регулировка диафрагмы в различных моделях камер для видеонаблюдения может осуществляться:

  • Вручную.
  • Автоматически видеокамерой с помощью постоянного тока, на основании количества света, попадающего на матрицу. Такая автоматическая регулировка диафрагмы (АРД) обозначается как DD (Direct Drive) или DD/DC .
  • Автоматически специальным модулем, встроенным в объектив и отслеживающим световой поток, проходящий через относительное отверстие. Такой способ АРД в спецификациях видеокамер обозначается как VD (Video Drive) . Он эффективен даже при попадании в объектив прямых солнечных лучей, но камеры наблюдения с ним дороже.

Электронный затвор (AES, скорость затвора, выдержка, shutter)

У разных производителей этот параметр может обозначаться как автоматический электронный затвор, выдержка или скорость затвора, но по сути он обозначает одно и то же - время, в течение которого свет экспонируется на матрицу. Выражается он обычно в виде 1/50-1/100000s.

Действие электронного затвора чем-то схоже с автоматической регулировкой диафрагмы - он регулирует светочувствительность матрицы, чтобы подстроить ее под уровень освещенности помещения. На рисунке ниже можно увидеть качество изображения в условиях недостаточной освещенности при разной скорости затвора (на рисунке ручная настройка, в то время как AES делает это автоматически).

В отличие от АРД подстройка происходит не путем регулировки светового потока, попадающего на матрицу, а путем регулировки выдержки, длительности накопления электрического заряда на матрице.

Однако возможности электронного затвора гораздо слабее, чем автоматической регулировки диафрагмы, поэтому на открытых пространствах, где уровень освещения изменяется от сумерек до яркого солнечного света, лучше использовать камеры с АРД. Видеокамеры с электронным затвором оптимальны для помещений, где уровень освещения в течение времени меняется незначительно.

Характеристики электронного затвора мало чем отличаются у различных моделей. Полезной фичей является возможность ручной регулировки скорости затвора (выдержки), так как в условиях плохой освещенности автоматически выставляются низкие значения, а это приводит к смазанности изображения движущихся объектов.

Sens-UP (или DSS)

Это функция накопления заряда матрицы в зависимости от уровня освещенности, т. е. увеличения ее чувствительности в ущерб скорости. Необходима для съемки качественной картинки в условиях плохой освещенности, когда отслеживание скоростных событий не критично (на объекте наблюдения нет быстро движущихся объектов).

Она тесно связана с описанной выше скоростью затвора (выдержкой). Но если скорость затвора выражается во временных единицах, то Sens-UP - в коэффициенте увеличения выдержки (xN): время накопления заряда (выдержка) увеличивается в N раз.

Разрешение

Тему разрешений камер видеонаблюдения мы немного затронули в прошлой статье . Разрешение камеры - это, фактически, размер получаемой картинки. Он измеряется либо в ТВЛ (телевизионных линиях), либо в пикселях. Чем больше разрешение, тем больше деталей вы сможете рассмотреть на видео.

Разрешение видеокамеры в ТВЛ - это количество вертикальных линий (переходов яркости), размещенных на картинке по горизонтали. Он считается более точным, поскольку дает представление именно о размере картинки на выходе. Тогда как разрешение в мегапикселях, указываемое в документации производителя, может вводить покупателя в заблуждение - оно часто относится не к размеру итоговой картинки, а к числу пикселей на матрице. В этом случае нужно обращать внимание на такой параметр, как "Эффективное количество пикселей"

Разрешение в пикселях - это размер картинки по горизонтали и вертикали (если он указывается в виде 1280×960) или общее количество пикселей на картинке (если он указывается как 1 МП (мегапиксель), 2 Мп и т. д.). Собственно, разрешение в мегапикселях получить очень просто: нужно умножить количество пикселей по горизонтали (1280) на количество по вертикали (960) и разделить на 1 000 000. Итого 1280×960 = 1,23 МП.

Как пересчитать ТВЛ в пиксели и наоборот? Точной формулы пересчета нет. Для определения разрешения видео в ТВЛ нужно использовать специальные тестовые таблицы для видеокамер. Для примерного представления соотношения можно воспользоваться таблицей:


Эффективные пиксели

Как мы уже сказали выше, часто размер в мегапикселях, указываемый в характеристиках видеокамер, не дает точного представления о разрешении получаемого изображения. Производитель указывает количество пикселей на матрице (сенсоре) камеры, но далеко не все из них участвуют в создании картинки.

Поэтому был введен параметр "Количество (число) эффективных пикселей", который как раз и показывает, сколько пикселей формируют итоговое изображение. Чаще всего он соответствует реальному разрешению получаемой картинки, хотя бывают и исключения.

ИК (инфракрасная) подсветка, IR

Позволяет проводить съемку в ночное время. Возможности матрицы (сенсора) камеры видеонаблюдения гораздо выше, чем человеческого глаза - к примеру, камера может "видеть" в инфракрасном излучении. Это свойство стали использовать для съемок в ночное время и в неосвещенных/слабоосвещенных помещениях. При достижении определенного минимума освещения видеокамера переходит в режим съемки в инфракрасном диапазоне и включает ИК-подсветку (IR).

Светодиоды IR встраиваются в камеру таким образом, чтобы свет от них не попадал в объектив камеры, а освещал угол ее обзора.

Изображение, полученное в условиях слабого освещения с помощью инфракрасной подсветки, всегда черно-белое. Цветные камеры, которые поддерживают ночную съемку, также переходят в черно-белый режим.

Значения ИК-подсветки в видеокамерах обычно даются в метрах - т. е. на сколько метров от камеры подсветка позволяет получить четкое изображение. IR-подсветку с большой дальностью называют ИК-прожектором.

Что такое Smart ИК, Smart IR?

Умная ИК-подсветка (Smart ИК) позволяет увеличивать или уменьшать мощность инфракрасного излучения в зависимости от дистанции до объекта. Это делается для того, чтобы объекты, оказавшиеся близко к камере, не были засвечены на видео.

ИК фильтр (ICR), режим день/ночь

Использование инфракрасной подсветки для съемок в ночное время имеет одну особенность: матрица таких камер выпускается с повышенной чувствительностью к инфракрасному диапазону. Это создает проблему для съемок в дневное время, так как матрица регистрирует инфракрасный спектр и днем, что нарушает нормальную цветность получаемого изображения.

Поэтому такие камеры работают в двух режимах - день и ночь. Днем матрицу закрывает механический инфракрасный фильтр (ICR), который отсекает инфракрасное излучение. Ночью фильтр сдвигается, позволяя лучам ИК-спектра беспрепятственно попадать на матрицу.

Иногда переключение режима день/ночь реализуется программно, однако такое решение дает менее качественные изображения.

Фильтр ICR может устанавливаться и в камерах без инфракрасной подсветки - для отсечения инфракрасного спектра в дневное время и улучшения цветопередачи видео.

Если в камере нет фильтра IGR, потому что она изначально не была предназначена для съемок в ночное время, ей нельзя добавить функцию ночной съемки, просто докупив отдельный модуль с ИК-подсветкой. В этом случае цветность дневного видео будет существенно искажаться.

Чувствительность (светочувствительность, минимальное освещение)

В отличие от фотокамер, где светочувствительность выражается параметром ISO, светочувствительность камер видеонаблюдения чаще всего выражается в люксах (Lux) и означает минимальное освещение, при котором камера способна давать видеоизображение хорошего качества - четкое и без шумов. Чем ниже значение этого параметра, тем выше чувствительность.

Камеры для видеонаблюдения подбираются в соответствии с теми условиями, в которых их планируется эксплуатировать: к примеру, если минимальная чувствительность камеры составляет 1 люкс, то четкого изображения в ночное время без дополнительной инфракрасной подсветки с нее получить не удастся.

Условия Уровень освещенности
Естественное освещение на улице в безоблачный солнечный день свыше 100 000 люкс
Естественное освещение на улице в солнечный день с легкими облаками 70 000 люкс
Естественное освещение на улице в пасмурную погоду 20 000 люкс
Магазины, супермаркеты: 750-1500 люкс
Офис или магазин: 50-500 люкс
Холлы гостиниц: 100-200 люкс
Стоянки автотранспорта, товарные склады 75-30 люкс
Сумерки 4 люкс
Хорошо освещенная автомагистраль ночью 10 люкс
Места зрителей в театре: 3-5 люкс
Больница в ночное время, глубокие сумерки 1 люкс
Полнолуние 0,1 - 0,3 люкс
Лунная ночь (четверть Луны) 0,05 люкс
Ясная безлунная ночь 0,001 люкс
Облачная безлунная ночь 0,0001 люкс

Соотношение сигнал/ шум (S/ N) определяет качество видеосигнала. Шумы на видеоизображении появляются в результате плохого освещения и выглядят как цветной или черно-белый снег или зернистость.

Параметр измеряется в децибелах. На картинке ниже довольно неплохое качество изображения показано уже при 30 Дб, но в современных камерах для получения качественного видео S/N должно быть не ниже 40 Дб.

Подавление шумов DNR (3D-DNR, 2D-DNR)

Естественно, что проблема наличия шумов в видео не осталась без внимания производителей. На данный момент существуют две технологии подавления шумов на картинке и соответствующего улучшения изображения:

  • 2-DNR. Более старая и менее совершенная технология. В основном, убираются шумы только ближнего плана, кроме того, иногда изображение из-за чистки немного смазывается.
  • 3-DNR. Новейшая технология, которая работает по сложному алгоритму и убирает не только ближние шумы, но и снег и зернистость на дальнем фоне.

Частота кадров, fps (скорость потока)

Частота кадров влияет на плавность видеоизображения - чем она выше, тем лучше. Для достижения плавной картинки необходима частота не менее 16-17 кадров в секунду. Стандарты PAL и SECAM поддерживают частоту кадров на уровне 25 к/с, а стандарт NTSC - 30 к/с. У профессиональных камер частота кадров может доходить до 120 к/с и выше.

Однако нужно учитывать, что чем выше частота кадров - тем больше места потребуется для хранения видео и тем больше будет загружен канал передачи.

Компенсация засветки (HLC, BLC, WDR, DWDR)

Распространенными проблемами видеонаблюдения являются:

  • отдельные яркие объекты, попадающие в кадр (фары, лампы, фонари), которые засвечивают часть изображения, и из-за которых невозможно рассмотреть важные детали;
  • слишком яркое освещение на заднем плане (солнечная улица за дверями помещения или за окном и тому подобное), на фоне которого ближние объекты отображаются слишком темными.

Для их решения существует несколько функций (технологий), применяемых в камерах наблюдения.

HLC - компенсация яркой засветки. Сравните:

BLC - компенсация задней засветки. Реализуется путем увеличения экспозиции всего изображения, в результате чего объекты на переднем плане становятся светлее, однако задний фон получается слишком светлым, на нем невозможно рассмотреть детали.

WDR (иногда его называют также HDR) - широкий динамический диапазон. Также используется для компенсации задней засветки, но более эффективно, чем BLC. При использовании WDR все объекты на видео имеют примерно одинаковую яркость и четкость, что позволяет в деталях рассмотреть не только передний план, но и задний. Достигается это благодаря тому, что камера делает снимки с разной экспозицией, и потом совмещает их для получения кадра с оптимальной яркостью всех объектов.

D-WDR - программная реализация широкого динамического диапазона , которая несколько хуже, чем полноценный WDR.

Классы защиты IK (Vandal-proof, антивандальные) и IP (от влаги и пыли)

Этот параметр важен, если вы выбираете камеру для наружного видеонаблюдения или в помещение с высокой влажностью, пыльностью и проч.

Классы IP - это защита от попадания внутрь посторонних предметов различного диаметра, в том числе пылевых частиц, а также защита от влаги. Классы IK - это антивандальная защита, т. е. от механического воздействия.

Самыми распространенными среди наружных камер видеонаблюдения классами защиты являются IP66, IP67 и IK10.

  • Класс защиты IP66 : камера полностью пыленепроницаема и защищена от сильных водяных струй (или морских волн). Внутрь вода попадает в незначительных количествах и не нарушает работу видеокамеры.
  • Класс защиты IP67 : камера полностью пыленепроницаема и может выдержать кратковременное полное погружение под воду или долго находиться под снегом.
  • Антивандальный класс защиты IK10 : корпус камеры выдержит попадание 5 кг груза с 40 см высоты (энергия удара 20 Дж).

Скрытые зоны (Privacy Mask)

Иногда возникает необходимость скрыть от наблюдения и записи некоторые участки, попадающие в поле зрения камеры. Чаще всего это связано с охраной неприкосновенности частной жизни. Некоторые модели камер позволяют настроить параметры нескольких таких зон, закрыв определенную часть или части изображения.

К примеру, на рисунке ниже на изображении с камеры скрыты окна соседнего дома.

Другие функции камер видеонаблюдения (DIS, AGC, AWB и др.)

OSD меню - возможность ручной настройки множества параметров камеры: экспозиции, яркости, фокусного расстояния (если есть такая опция) и т. д.

- съемка в условиях плохой освещенности без инфракрасной подсветки.

DIS - функция стабилизации изображения с камеры при съемке в условиях вибрации или движения

EXIR Technology - технология инфракрасной подсветки, разработанная Hikvision. Благодаря ей достигается большая эффективность подсветки: большая дальность при меньшем энергопотреблении, рассеивании и т. д.

AWB - автоматическая регулировка баланса белого цвета в изображении, с тем, чтобы цветопередача была как можно ближе к естественной, видимой человеческим глазом. Особенно актуальна для помещений с искусственным освещением и различными источниками света.

AGC (АРУ) - автоматическая регулировка усиления. Применяется для того, чтобы выходной видеопоток с камер всегда был стабильным, независимо от силы входного видеопотока. Чаще всего усиление видеосигнала требуется в условиях слабой освещенности, а уменьшение - наоборот, при слишком сильном освещении.

Детектор движения - благодаря этой функции камера может включаться и вести запись только при возникновении движения на объекте наблюдения, а также передавать сигнал тревоги при срабатывании детектора. Это помогает сэкономить место для хранения видео на видеорегистраторе, разгрузить канал передачи видеопотока, и организовать оповещение персонала о произошедшем нарушении.

Тревожный вход камеры - это возможность включить камеру, начать запись видео при наступлении какого-либо события: срабатывания подключенного датчика движения или другого подключенного к ней датчика.

Тревожный выход позволяет запустить реакцию на зафиксированное камерой тревожное событие, например, включить сирену, отправить оповещение по почте или SMS и т. д.

Не нашли характеристику, которую искали?

Мы постарались собрать все часто встречаемые характеристики камер для видеонаблюдения. Если вы не нашли здесь пояснение какого-то непонятного для вас параметра - напишите в комментариях, мы постараемся добавить эту информацию в статью.


сайт
 
Статьи по теме:
Не работает разблокировка при открытии Smart Cover на iPad Honor 6c отключение при закрывании чехла
Чехол S View, которым Samsung оснащает свои смартфоны напоминает нам о старых добрых временах, когда телефоны-раскладушки оснащались небольшим дополнительным дисплеем на задней части крышки. Если вы ни разу не видели S View – то это обычный чехол в виде к
Блокировка в случае кражи или потери телефона
Порою случаются такие моменты, когда возникает необходимость произвести блокировку своей сим карты на определённый период времени. Возможно вы хотите в последствии изменить свой тарифный план или вовсе перестать пользоваться услугами своего мобильного опе
Прошивка телефона, смартфона и планшета ZTE
On this page, you will find the official link to download ZTE Blade L3 Stock Firmware ROM (flash file) on your Computer. Firmware comes in a zip package, which contains Flash File, Flash Tool, USB Driver and How-to Flash Manual. How to FlashStep 1 : Downl
Завис компьютер — какие клавиши нажать на клавиатуре, как перезагрузить или выключить
F1- вызывает «справку» Windows или окно помощи активной программы. В Microsoft Word комбинация клавиш Shift+F1 показывает форматирование текста; F2- переименовывает выделенный объект на рабочем столе или в окне проводника; F3- открывает окно поиска файла