Презентация по физике тему электрический ток. Презентация " постоянный электрический ток" презентация к уроку по физике (8 класс) на тему

Урок Электрический ток

Слайдов: 17 Слов: 261 Звуков: 0 Эффектов: 4

Урок физики. Тема: обобщение знаний по разделу физики «Электрический ток». Устройства, работающие на электрическом токе. Беспорядочное движение свободных частиц. Движение свободных частиц под действием электрического поля. Электрический ток направлен по направлению движения положительных зарядов. - Направление тока. Основные характеристики электрического тока. I – сила тока. R – сопротивление. U – напряжение. Единица измерения: 1А = 1Кл / 1с. Действие электрического тока на человека. I< 1 мА, U < 36 В – безопасный ток. I>100 мА, U > 36 В – ток опасный для здоровья. - Урок Электрический ток.pps

Классическая электродинамика

Слайдов: 15 Слов: 1269 Звуков: 0 Эффектов: 0

Электродинамика. Электрический ток. Сила тока. Физическая величина. Немецкий физик. Закон Ома. Специальные приборы. Последовательное и параллельное соединение проводников. Правила Кирхгофа. Работа и мощность тока. Отношение. Электрический ток в металлах. Средняя скорость. Проводник. Электрический ток в полупроводниках. - Классическая электродинамика.ppt

Постоянный электрический ток

Слайдов: 33 Слов: 1095 Звуков: 0 Эффектов: 0

ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК. 10.1. Причины электрического тока. 10.2. Плотность тока. 10.3. Уравнение непрерывности. 10.4. Сторонние силы и Э. Д. С. 10.1. Причины электрического тока. Заряженные объекты являются причиной не только электростатического поля, но еще и электрического тока. Упорядоченное движение свободных зарядов вдоль силовых линий поля - электрический ток. И Где - объемная плотность заряда. Распределение напряженности Е и потенциала? электростатического поля связано с плотностью распределения зарядов? в пространстве уравнением Пуассона: Поэтому поле и называется электростатическим. - Постоянный электрический ток.ppt

Постоянный ток

Слайдов: 25 Слов: 1294 Звуков: 26 Эффектов: 2

Электрический ток. Упорядоченное движение заряженных частиц. Полюса источника тока. Источники тока. Электрическая цепь. Условные обозначения. Схемы. Электрический ток в металлах. Узлы кристаллической решетки металла. Электрическое поле. Упорядоченное перемещение электронов. Действие электрического тока. Тепловое действие тока. Химическое действие тока. Магнитное действие тока. Взаимодействие между проводником с током и магнитом. Направление электрического тока. Сила тока. Опыт по взаимодействию двух проводников с током. Опыт. Единицы силы тока. Дольные и кратные единицы. Амперметр. - Постоянный ток.ppt

«Электрический ток» 8 класс

Слайдов: 20 Слов: 488 Звуков: 0 Эффектов: 0

Электрический ток. Упорядоченное (направленное) движение заряженных частиц. Сила тока. Единица измерения силы тока. Ампер Андре Мари. Амперметр. Измерение силы тока. Напряжение. Электрическое напряжение на концах проводника. Алессандро Волта. Вольтметр. Измерение напряжения. Сопротивление прямо пропорционально длине проводника. Взаимодействие движущихся электронов с ионами. За единицу сопротивления принимают 1 Ом. Ом Георг. Сила тока в участке цепи прямо пропорциональна напряжению. Определение сопротивления проводника. Применение электрического тока. - «Электрический ток» 8 класс.ppt

«Электрический ток» 10 класс

Слайдов: 22 Слов: 508 Звуков: 0 Эффектов: 42

Электрический ток. План урока. Повторение. Слово «электричество» происходит от греческого слова «электрон». Тела электризуются при контакте (соприкосновении). Заряды бывают двух видов – положительные и отрицательные. Тело заряжено отрицательно. Тело обладает положительным зарядом. Наэлектризованные тела. Действие одного заряженного тела передается другому. Актуализация знаний. Посмотри клип. Условия. От чего же зависит величина тока. Закон Ома. Экспериментальная проверка закона Ома. Как меняется сила тока при изменении сопротивления. Между напряжением и силой тока зависимость. - «Электрический ток» 10 класс.ppt

Электрический ток в проводниках

Слайдов: 12 Слов: 946 Звуков: 0 Эффектов: 24

Электрический ток. Опорные понятия. Виды взаимодействия. Главные условия существования электрического тока. Движущийся электрический заряд. Сила тока. Интенсивность движения заряженных частиц. Направление электрического тока. Движение электронов. Сила тока в проводнике. - Электрический ток в проводниках.ppt

Характеристики электрического тока

Слайдов: 21 Слов: 989 Звуков: 0 Эффектов: 93

Электрический ток. Упорядоченное движение заряженных частиц. Сила электрического тока. Электрическое напряжение. Электрическое сопротивление. Закон Ома. Работа электрического тока. Мощность электрического тока. Закон Джоуля-Ленца. Действия электрического тока. Электрический ток в металлах. Химическое действие. Амперметр. Вольтметр. Сила тока в участке цепи. Работа. Задачи на повторение. - Характеристики электрического тока.ppt

Работа электрического тока

Слайдов: 8 Слов: 298 Звуков: 0 Эффектов: 33

Разработка урока по физике. Выполнила учитель физики Курочкина Т.А. Работа электрического тока. Б) Что является причиной электрического тока? В) Какую роль выполняет источник тока? 3. Новый материал. А) Анализ энергетических превращений, происходящих в электрических цепях. Новый материал. Выведем формулы для расчета работы электрического тока. 1) A=qU, Задача. 1) Какие приборы используют для измерения работы электрического тока? Какие формулы для расчета работы вы знаете? - Работа электрического тока.ppt

Мощность электрического тока

Слайдов: 14 Слов: 376 Звуков: 0 Эффектов: 0

Продолжи предложения. Электрический ток… Сила тока… Напряжение… Причиной возникновения электрического поля является… Электрическое поле на заряженные частицы действует с … Работа и мощность электрического тока. Знать определение работы и мощности электрического тока на участке цепи? Читать и изображать схемы соединений элементов электрической цепи. Определять работу и мощность тока на основе экспериментальных данных? Работа тока A=UIt. Мощность тока P=UI. Действие тока характеризуют две величины. На основе экспериментальных данных определите мощность тока в электрической лампе. - Мощность электрического тока.ppt

Источники тока

Слайдов: 22 Слов: 575 Звуков: 0 Эффектов: 0

Источники тока. Необходимость наличия источника тока. Принцип работы источника тока. Современный мир. Источник тока. Классификация источников тока. Работа по разделению. Первая электрическая батарея. Вольтов столб. Гальванический элемент. Состав гальванического элемента. Из нескольких гальванических элементов можно составить батарею. Герметичные малогабаритные аккумуляторы. Домашний проект. Универсальный блок питания. Внешний вид установки. Проведение эксперимента. Электрический ток в проводнике. -

Работа и мощность тока

Слайдов: 16 Слов: 486 Звуков: 0 Эффектов: 0

Шестнадцатое марта Классная работа. Работа и мощность электрического тока. Научиться определять мощность и работу тока. Научиться применять формулы при решении задач. Мощность электрического тока –работа, которую совершает ток за единицу времени. i=P/u. U=P/I. A=P*t. Единицы мощности. Джеймс Уатт. Ваттметр – прибор для измерения мощности. Работа электрического тока. Единицы работы. Джеймс Джоуль. Рассчитайте потребляемую энергию (1 кВт*ч стоит 1,37 р). - Работа и мощность тока.ppt

Гальванические элементы

Слайдов: 33 Слов: 2149 Звуков: 0 Эффектов: 0

Равновесные электродные процессы. Растворы, обладающие электрической проводимостью. Электрическая работа. Проводники первого рода. Зависимость электродного потенциала от активности участников. Окисленная форма вещества. Комбинация констант. Величины, которые могут варьироваться. Активности чистых компонентов. Правила схематической записи электродов. Уравнение электродной реакции. Классификация электродов. Электроды первого рода. Электроды второго рода. Газовые электроды. Ион-селективные электроды. Потенциал стеклянного электрода. Гальванические элементы. Один и тот же по природе металл. - Гальванические элементы.ppt

Электрические цепи 8 класс

Слайдов: 7 Слов: 281 Звуков: 0 Эффектов: 41

Работа. Электрического тока. Физика. Повторение. Работа электрического тока. Тренажер. Тест. Домашнее задание. 2. Может ли изменяться сила тока в разных участках цепи? 3. Что можно сказать о напряжении на различных участках последовательной электрической цепи? Параллельной? 4. Как рассчитать общее сопротивление последовательной электрической цепи? 5. Каковы преимущества и недостатки последовательной цепи? U – электрическое напряжение. Q – электрический заряд. А – работа. I– сила тока. T – время. Единицы измерения. Для измерения работы электрического тока нужны три прибора: - Электрические цепи 8 класс.ppt

Электродвижущая сила

Слайдов: 6 Слов: 444 Звуков: 0 Эффектов: 0

Электродвижущая сила. Закон Ома для замкнутой цепи. Источники тока. Понятия и величины: Законы: Ома для замкнутой цепи. Ток короткого замыкания Правила электробезопасности в различных помещениях Плавкие предохранители. Аспекты жизнедеятельности человека: Такие силы получили название сторонних сил. Участок цепи, на котором есть ЭДС, называют неоднородным участком цепи. - Электродвижущая сила.ppt

Источники электрического тока

Слайдов: 25 Слов: 1020 Звуков: 0 Эффектов: 6

Источники электрического тока. Физика 8 класс. Электрический ток – упорядоченное движение заряженных частиц. Сравни опыты, проводимые на рисунках. Что общего и чем отличаются опыты? Устройства, разделяющие заряды, т.е. создающие электрическое поле, называют источниками тока. Первая электрическая батарея появилась в 1799 году. Механический источник тока - механическая энергия преобразуется в электрическую энергию. Электрофорная машина. Тепловой источник тока - внутренняя энергия преобразуется в электрическую энергию. Термопара. Заряды разделяются при нагревании спая. -

Задачи на электрический ток

Слайдов: 12 Слов: 373 Звуков: 0 Эффектов: 50

Урок по физике: обобщение по теме «Электричество». Цель урока: Викторина. Формула работы электрического тока… Задачи первого уровня. Задачи второго уровня. Терминологический диктант. Основные формулы. Электрический ток. Сила тока. Напряжение. Сопротивление. Работа тока. Задачи. 2.Имеются две лампы мощностью 60 Вт и 100Вт, рассчитанные на напряжение 220В. - Задачи на электрический ток.ppt

Одиночный заземлитель

Слайдов: 31 Слов: 1403 Звуков: 0 Эффектов: 13

Электробезопасность. Защита от поражения электрическим током. Порядок расчета одиночных заземлителей. Учебные вопросы Введение 1.Шаровой заземлитель. Правила устройства электроустановок. Хорольский В.Я. Одиночный заземлитель. Заземляющий проводник. Шаровой заземлитель. Снижение потенциала. Ток. Потенциал. Шаровой заземлитель у поверхности земли. Уравнение. Нулевой потенциал. Полушаровой заземлитель. Распределение потенциала вокруг полушарового заземлителя. Ток замыкания. Металлический фундамент. Стержневой и дисковый заземлители. Стержневой заземлитель. Дисковый заземлитель. - Одиночный заземлитель.ppt

Тест по электродинамике

Слайдов: 18 Слов: 982 Звуков: 0 Эффектов: 0

Основы электродинамики. Сила Ампера. Постоянный полосовой магнит. Стрелка. Электрическая цепь. Проволочный виток. Электрон. Демонстрация опыта. Постоянный магнит. Однородное магнитное поле. Сила электрического тока. Сила тока равномерно увеличивается. Физические величины. Прямолинейный проводник. Отклонение электронного луча. Электрон влетает в область однородного магнитного поля. Горизонтальный проводник. Молярная масса. -


ЧТО ПРЕДСТАВЛЯЕТ СОБОЙ ЭЛЕКТРИЧЕСКИЙ ТОК В МЕТАЛЛАХ?

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.


ПРИРОДА ЭЛЕКТРИЧЕСКОГО ТОКА В МЕТАЛЛАХ

Электрический ток в металлических проводниках никаких изменений в этих проводниках, кроме их нагревания, не вызывает.

Концентрация электронов проводимости в металле очень велика: по порядку величины она равна числу атомов в единице объёма металла. Электроны в металлах находятся в непрерывном движении. Их беспорядочное движение напоминает движение молекул идеального газа. Это дало основание считать, что электроны в металлах образуют своеобразный электронный газ. Но скорость беспорядочного движения электронов в металле значительно больше скорости молекул в газе.


ОПЫТ Э.РИККЕ

Немецкий физик Карл Рикке провёл опыт, в котором электрический ток пропускал в течении года через три прижатых друг к другу, отшлифованных цилиндра - медный, алюминиевый и снова медный. После окончания было установлено, что имеются лишь незначительные следы взаимного проникновения металлов, которые не превышают результатов обычной диффузии атомов в твёрдых телах. Измерения, проведённые с высокой степенью точности, показали, что масса каждого из цилиндров осталась неизменной. Поскольку массы атомов меди и алюминия существенно отличаются друг от друга, то масса цилиндров должна была бы заметно измениться, если бы носителями заряда были ионы. Следовательно, свободными носителями заряда в металлах являются не ионы. Огромный заряд, который прошёл через цилиндры, был перенесён, очевидно, такими частицами, которые одинаковы и в меди, и в алюминии. Естественно предположить, что ток в металлах осуществляют именно свободные электроны.


Карл Виктор Эдуард Рикке


ОПЫТ Л.И. МАНДЕЛЬШТАМА И Н.Д. ПАПАЛЕКСИ

Русские ученые Л. И. Мандельштам и Н. Д. Папалекси в 1913 году поставили оригинальный опыт. Катушку с проводом стали крутить в разные стороны. Раскрутят, по часовой стрелке, потом резко остановят и - назад. Рассуждали они примерно так: если электроны и вправду обладают массой, то, когда катушка внезапно останавливается, электроны еще некоторое время должны двигаться по инерции. Так и получилось. Подсоединили к концам провода телефон и услышали звук, а это означало что через него протекает ток.



Мандельштам Леонид Исаакович

Николай Дмитриевич Папалекси (1880-1947)


ОПЫТ Т.СТЮАРТА И Р.ТОЛМЕНА

Опыт Мандельштама и Папалекси в 1916 году повторили американские ученые Толмен и Стюарт.

  • Катушка с большим числом витков тонкой проволоки приводили в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов присоединили к чувствительному баллистическому гальванометру. Раскрученная катушка резко тормозилась, в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.

Батлер Стюарт Томас

Ричард Чейз Толмен



КЛАССИЧЕСКАЯ ЭЛЕКТРОННАЯ ТЕОРИЯ

Предположение о том, что за электрический ток в металлах ответственны электроны, существовало и до проведения опыта Стюарта и Толмена. В 1900 году немецкий ученый П. Друде на основании гипотезы о существовании свободных электронов в металлах создал свою электронную теорию проводимости металлов, названную после классической электронной теорией . Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом схожий с идеальным газом. Он заполняет пространство между ионами, образующими кристаллическую решетку металла

На рисунке показана траектория одного из свободных электронов в кристаллической решетке металла


ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ:

  • Наличие большого числа электронов в металлах способствует их хорошей проводимости.
  • Под действием внешнего электрического поля на беспорядочное движение электронов накладывается упорядоченное движение, т.е. возникает ток.
  • Сила электрического тока, идущего по металлическому проводнику, равна:
  • Так как внутреннее строение у разных веществ различное, то и сопротивление тоже будет различным.
  • При увеличении хаотического движения частиц вещества происходит нагревание тела, т.е. выделение тепла. Здесь соблюдается закон Джоуля-Ленца:

l = e * n * S * Ū д


СВЕРХПРОВОДИМОСТЬ МЕТАЛЛОВ И СПЛАВОВ

  • Некоторые металлы и сплавы обладают сверхпроводимостью, свойством обладать строго нулевым электрическим сопротивлением при достижении ими температуры ниже определённого значения (критическая температура).

Явление сверхпроводимости было обнаружено голландским физиком Х.Камерлингом – Онессом в 1911 году у ртути (Т кр =4,2 о К).


ОБЛАСТЬ ПРИМЕНЕНИЯ ЭЛЕКТРИЧЕСКОГО ТОКА:

  • получение сильных магнитных полей
  • передача электроэнергии от источника к потребителю
  • мощные электромагниты со сверхпроводящей обмоткой в генераторах, электродвигателях и ускорителях, в нагревательных приборах

В настоящее время в энергетике существует большая проблема, связанная с большими потерями при передаче электроэнергии по проводам.

Возможное решение проблемы:

Строительство дополнительных ЛЭП - замена проводов на большие поперечные сечения - повышение напряжения - расщепление фазы

Слайд 1

преподаватель физики ГБОУ СПО «Невинномысский Энергетический Техникум» Пак Ольга Бен-Сер
«Электрический ток в газах»

Слайд 2

Процесс протекания тока через газы называют электрическим разрядом в газах. Распад молекул газа на электроны и положительные ионы называется ионизацией газа
При комнатных температурах газы являются диэлектриками. Нагревание газа или облучение ультрафиолетовыми, рентгеновскими и другими лучами вызывает ионизацию атомов или молекул газа. Газ становится проводником.

Слайд 3

Носители заряда возникают только при ионизации. Носители зарядов в газах – электроны и ионы
Если ионы и свободные электроны оказываются во внешнем электрическом поле, то они приходят в направленное движение и создают электрический ток в газах.
Механизм электропроводимости газов

Слайд 4

Несамостоятельный разряд
Явление протекания электрического тока через газ, наблюдаемое только при условии какого-либо внешнего воздействия на газ, называется несамостоятельным электрическим разрядом. При отсутствии напряжения на электродах гальванометр, включенный в цепь покажет нуль. При небольшой разности потенциалов между электродами трубки заряженные частицы начнут перемещаться, возникает газовый разряд. Но не все образующиеся ионы доходят до электродов. По мере увеличения разности потенциалов между электродами трубки возрастает и сила тока в цепи.

Слайд 5

Несамостоятельный разряд
При некотором определенном напряжении, когда все заряженные частицы, образующиеся в газе ионизатором за секунду, достигают за это время электродов. Ток достигает насыщения. Вольт-амперная характеристика несамостоятельного разряда

Слайд 6

Явление прохождения через газ электрического тока, не зависящего от внешних ионизаторов называется самостоятельным газовым разрядом в газе. Электрон, ускоряясь электрическим полем, на своем пути к аноду сталкивается с ионами и нейтральными молекулами. Его энергия пропорциональна напряженности поля и длине свободного пробега электрона. Если кинетическая энергия электрона превосходит работу, которую нужно совершить, чтобы ионизировать атом, то при столкновении электрона с атомом происходит его ионизация, называемая ионизацией электронным ударом.
Лавинообразное нарастание числа заряженных частиц в газе может начаться под воздействием сильного электрического поля. Ионизатор в этом случае уже не нужен.
Самостоятельный разряд

Слайд 7

Слайд 8

Коронный разряд наблюдается при атмосферном давлении в газе, находящимся в сильно неоднородном электрическом поле (около остриев, проводов линий высокого напряжения и т.д.) светящаяся область которого часто напоминает корону (поэтому его и назвали коронным)
Типы самостоятельного разряда

Слайд 9

Искровой разряд- Прерывистый разряд в газе, происходящий при большой напряженности электрического поля (около 3МВ/м) в воздухе при атмосферном давлении. Искровой разряд в отличии от коронного, приводит к пробою воздушного промежутка. применение: молния, для зажигания горючей смеси в ДВС, электроискровой обработки металлов
Типы самостоятельного разряда

Слайд 10

Дуговой разряд -(электрическая дуга) разряд в газе, происходящий при атмосферном давлении и небольшой разности потенциалов между близко расположенными электродами, но сила тока в электрической дуге достигает десятки ампер. Применение: прожектор, электросварка, резание тугоплавких металлов.
Типы самостоятельного разряда


Электрический ток Электрический ток – упорядоченное (направленное) движение электрических зарядов. Ток проводимости (ток в проводниках) – движение микрозарядов в макротеле. Конвекционный ток – движение макроскопических заряженных тел в пространстве. Ток в вакууме – движение микрозарядов в вакууме.


Электрический ток В проводнике под действием приложенного электрического поля свободные электрические заряды перемещаются: положительные – по полю, отрицательные – против поля. Носители зарядов совершают сложное движение: 1)хаотическое со средней скоростью v ~ (10 3 ÷ 10 4 м/с), 2) направленное со средней скоростью v ~ Е (доли мм/с).


Таким образом, средняя скорость направленного движения электронов много меньше средней скорости их хаотического движения. Незначительная средняя скорость направленного движения объясняется их частыми столкновениями с ионами кристаллической решетки. В то же время всякое изменение электрического поля передается вдоль проводов со скоростью, равной скорости распространения электромагнитной волны – (3·10 8 м/с). Поэтому движение электронов под действием внешнего поля возникает на всем протяжении провода практически одновременно с подачей сигнала.


При движении зарядов нарушается их равновесное распределение. Следовательно, поверхность проводника уже не является эквипотенциальной и вектор напряженности электрического поля Е не направлен перпендикулярно поверхности, так как для движения зарядов необходимо, чтобы на поверхности Е τ 0. По этой причине внутри проводника существует электрическое поле, которое равно нулю только в случае равновесного распределения зарядов на поверхности проводника.


Условия появления и существования тока проводимости: 1. Наличие в среде свободных носителей заряда, т.е. заряженных частиц, способных перемещаться. В металле это электроны проводимости; в электролитах – положительные и отрицательные ионы; в газах – положительные, отрицательные ионы и электроны.


Условия появления и существования тока проводимости: 2. Наличие в среде электрического поля, энергия которого затрачивалась бы на перемещение электрических зарядов. Для того чтобы ток был длительным, энергия электрического поля должна все время пополняться, т.е. нужен источник электрической энергии – устройство, в котором происходит преобразование какой-либо энергии в энергию электрического поля.




– сила тока численно равна заряду, проходящему через поперечное сечение проводника за единицу времени. В СИ: . Движение носителей заряда одного знака эквивалентно движению носителей противоположного знака в противоположном направлении. Если ток создается двумя видами носителей:


















Сторонние силы. Электродвижущая сила. Напряжение Если в цепи на носители тока действует только сила электростатического поля, то происходит перемещение носителей, которое приводит к выравниванию потенциалов во всех точках цепи и к исчезновению электрического поля. Следовательно, для существования постоянного тока необходимо наличие в цепи устройства, которое создает и поддерживает разность потенциалов φ за счет работы сил неэлектрического происхождения. Такие устройства называются источниками тока (генераторы – преобразуется механическая энергия; аккумуляторы – энергия химической реакции между электродами и электролитом).


Сторонние силы. Электродвижущая сила. Сторонние силы силы неэлектрического происхождения, действующие на заряды со стороны источников тока. За счет поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля. Следовательно, на концах внешней цепи поддерживается разность потенциалов и в цепи течет постоянный ток.


Сторонние силы. Электродвижущая сила. Сторонние силы совершают работу по перемещению электрических зарядов. Электродвижущая сила (э.д.с. – E) – физическая величина, определяемая работой, совершаемой сторонними силами при перемещении единичного положительного заряда






Закон Ома для однородного участка цепи Однородным называется участок цепи не содержащий источника э.д.с. Закон Ома в интегральной форме: сила тока прямо пропорциональна падению напряжения на однородном участке цепи и обратно пропорциональна сопротивлению этого участка.


Закон Ома не является универсальной связью между током и напряжением. а)Ток в газах и полупроводниках подчиняется закону Ома только при небольших U. б)Ток в вакууме не подчиняется закону Ома. Закон Богуславского-Лэнгмюра (закон 3/2): I ~ U 3/2. в) в дуговом разряде – при увеличении тока напряжение падает. Неподчинение закону Ома обусловлено зависимостью сопротивления от тока.


Закон Ома В СИ сопротивление R измеряется в омах . Величина R зависит от формы и размеров проводника, а также от свойств материала, из которого он сделан. Для цилиндрического проводника: где ρ – удельное электрическое сопротивление [Ом·м], для металлов его величина порядка 10 –8 Ом·м.


Сопротивление проводника зависит от его температуры: α – температурный коэффициент сопротивления, для чистых металлов (при не очень низких температурах α 1 / 273 К -1, ρ 0, R 0 – соответственно удельное сопротивление и сопротивление проводника при t = 0 o C. Такая зависимость ρ(t) объясняется тем, что с ростом температуры интенсивность хаотического движения положительных ионов кристаллической решетки увеличивается, направленное движение электронов тормозится.










Закон Ома для неоднородного участка цепи Неоднородный – участок цепи, содержащий источник э.д.с. Замкнутая цепь содержит источник э.д.с., который в направлении 1–2 способствует движению положительных зарядов. Е – напряженность поля кулоновских сил, Е ст – напряженность поля сторонних сил.






Закон Ома для неоднородного участка цепи Работа, совершаемая кулоновскими и сторонними силами по перемещению единичного положительного заряда q 0+ – падение напряжения (напряжение). Так как точки 1, 2 были выбраны произвольно, то полученные соотношения справедливы для любых двух точек электрической цепи:






Работа и мощность электрического тока Закон Джоуля-Ленца При соударении свободных электронов с ионами кристаллической решетки они передают ионам избыток кинетической энергии, которую приобретают за время ускоренного движения в электрическом поле. В результате этих соударений амплитуда колебаний ионов около узлов кристаллической решетки увеличивается (тепловое движение ионов становится более интенсивным). Следовательно, проводник нагревается: температура – мера интенсивности хаотического движения атомов и молекул. Выделившееся тепло Q равно работе тока A.



Законы Кирхгофа Используются для расчета разветвленных цепей постоянного тока. Неразветвленная электрическая цепь – цепь, в которой все элементы цепи соединены последовательно. Элемент электрической цепи – любое устройство, включенное в электрическую цепь. Узел электрической цепи – точка разветвленной цепи, в которой сходится более двух проводников. Ветвь разветвленной электрической цепи – участок цепи между двумя узлами.




Второй закон Кирхгофа (обобщенный закон Ома): в любом замкнутом контуре, произвольно выбранном в разветвленной электрической цепи, алгебраическая сумма произведений сил токов I i на сопротивление соответствующих участков R i этого контура равна алгебраической сумме э.д.с. в контуре.


Второй закон Кирхгофа Ток считается положительным, если его направление совпадает с условно выбранным направлением обхода контура. Э.д.с. считается положительной, если направление обхода происходит от – к + источника тока, т.е. э.д.с. создает ток, совпадающий с направлением обхода.


Порядок расчета разветвленной цепи: 1. Произвольно выбрать и обозначить на чертеже направление тока во всех участках цепи. 2. Подсчитать число узлов в цепи (m). Записать первый закон Кирхгофа для каждого из (m-1) узлов. 3. Выделить произвольно замкнутые контуры в цепи, произвольно выбрать направления обхода контуров. 4. Записать для контуров второй закон Кирхгофа. Если цепь состоит из р-ветвей и m-узлов, то число независимых уравнений 2- го закона Кирхгофа равно (p-m+1).

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Постоянный электрический ток

Электрическим током называется упорядоченное (направленное) движение заряженных частиц.

Электрический ток – упорядоченное движение заряженных частиц. Для существования электрического тока необходимы следующие условия: Наличие свободных электрических зарядов в проводнике; Наличие внешнего электрического поля для проводника.

Сила тока равна отношению электрического заряда q , прошедшего через поперечное сечение проводника, ко времен его прохождения t . I= I -сила тока(А) q- электрический заряд(Кл) t- время(с) g t

Единица измерения силы тока -7

Ампер Андре Мари Родился 22 января 1775 в Полемье близ Лиона в аристократической семье. Получил домашнее образование.. Занимался исследованиям связи между электричеством и магнетизмом (этот круг явлений Ампер называл электродинамикой). Впоследствии разработал теорию магнетизма. Умер Ампер в Марселе 10 июня 1836.

Амперметр Амперметр- прибор для измерения силы тока. Амперметр включают в цепь последовательно с тем прибором, силу тока в котором измеряют.

ПРИМЕНЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА

Биологическое действие тока

Тепловое действие тока

Химическое действие электрического тока Впервые было открыто в 1800г.

Химическое действие тока

Магнитное действие тока

Магнитное действие тока

Сравни опыты, проводимые на рисунках. Что общего и чем отличаются опыты? Источник тока - это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию. Устройства, разделяющие заряды, т.е. создающие электрическое поле, называют источниками тока.

Первая электрическая батарея появилась в 1799 году. Её изобрел итальянский физик Алессандро Вольта (1745 - 1827) - итальянский физик, химик и физиолог, изобретатель источника постоянного электрического тока. Его первый источник тока – «вольтов столб» был построен в точном соответствии с его теорией «металлического» электричества. Вольта положил друг на друга попеременно несколько десятков небольших цинковых и серебряных кружочков, проложив меж ними бумагу, смоченную подсоленной водой.

Механический источник тока - механическая энергия преобразуется в электрическую энергию. До конца XVIII века все технические источники тока были основаны на электризации трением. Наиболее эффективным из этих источников стала электрофорная машина (диски машины приводятся во вращение в противоположных направлениях. В результате трения щеток о диски на кондукторах машины накапливаются заряды противоположного знака) Электрофорная машина

Тепловой источник тока - внутренняя энергия преобразуется в электрическую энергию Термопара Термоэлемент (термопара) - две проволоки из разных металлов необходимо спаять с одного края, затем нагреть место спая, то в них возникает ток. Заряды разделяются при нагревании спая. Термоэлементы применяются в термодатчиках и на геотермальных электростанциях в качестве датчика температуры. Термоэлемент

Энергия света c помощью солнечных батарей преобразуется в электрическую энергию. Солнечная батарея Фотоэлемент. При освещении некоторых веществ светом в них появляется ток, световая энергия превращается в электрическую. В данном приборе заряды разделяются под действием света. Из фотоэлементов составлены солнечные батареи. Применяются в солнечных батареях, световых датчиках, калькуляторах, видеокамерах. Фотоэлемент

Электромеханический генератор. Заряды разделяются путем совершения механической работы. Применяется для производства промышленной электроэнергии. Электромеханический генератор Генератор (от лат. generator - производитель) - устройство, аппарат или машина, производящая какой-либо продукт.

Рис. 1 Рис. 2 Рис. 3 Какие источники тока вы видите на рисунках?

Устройство гальванического элемента Гальванический элемент- химический источник тока, в котором электрическая энергия вырабатывается в результате прямого преобразования химической энергии окислительно-восстановительной реакцией.

Из нескольких гальванических элементов можно составить батарею.

Аккумулятор (от лат. accumulator - собиратель) - устройство для накопления энергии с целью ее последующего использования.

Источник тока Способ разделения зарядов Применение Фотоэлемент Действие света Солнечные батареи Термоэлемент Нагревание спаев Измерение температуры Электромехани-ческий генератор Совершение механической работы Производство промышленной эл. энерг. Гальванический элемент Химическая реакция Фонарики, радиоприемники Аккумулятор Химическая реакция Автомобили Классификация источников тока

Что называют электрическим током? (Электрическим током называется упорядоченное движение заряженных частиц.) 2. Что может заставить заряженные частицы упорядоченно двигаться? (Электрическое поле.) 3. Как можно создать электрическое поле? (С помощью электризации.) 4. Можно ли искру, возникшую в электрофорной машине, назвать электрическим током? (Да, так как имеет место кратковременное упорядоченное движение заряженных частиц?) Закрепление материала. Вопросы:

5. Что является положительным и отрицательным полюсами источника тока? 6. Какие источники тока вы знаете? 7. Возникает ли электрический ток при заземлении заряженного металлического шарика? 8. Движутся ли заряженные частицы в проводнике, когда по нему идет ток? 9. Если вы возьмёте картофелину или яблоко и воткнёте в них медную и цинковую пластинки. Затем подсоедините к этим пластинкам 1,5-В лампочку. Что у вас получится? Закрепление материала. Вопросы:

Решаем в классе Стр.27 задача 5.2

Для опыта тебе понадобится: Прочное бумажное полотенце; пищевая фольга; ножницы; медные монеты; поваренная соль; вода; два изолированных медных провода; маленькая лампочка (1,5 В). Твои действия: Раствори в воде немного соли; Нарежь аккуратно бумажное полотенце и фольгу на квадратики чуть крупнее монет; Намочи бумажные квадратики в солёной воде; Положи друг на друга стопкой: медную монету, кусочек фольги, снова монету, и так далее несколько раз. Сверху стопки должна быть бумага, внизу – монета. Защищённый конец одного провода подсунь под стопку, второй конец присоедини к лампочке. Один конец второго провода положи на стопку сверху, второй тоже присоедини к лампочке. Что получилось? Домашний проект. Сделай батарейку.

Использованные ресурсы и литература: Кабардин О.Ф.физика 8класс М.:Просвещение,2014г. Томилин А.Н. Рассказы об электричестве. http://ru.wikipedia.org http:// www.disel.r u http:// www.fizika.ru http:// www.edu.doal.ru http:// schools.mari-el.ru http:// www.iro.yar.ru Домашнее задание: § 5,6,7 стр27, задача №5.1; Домашний проект. Сделай батарейку (инструкция выдаётся каждому ученику).


 
Статьи по теме:
Не работает разблокировка при открытии Smart Cover на iPad Honor 6c отключение при закрывании чехла
Чехол S View, которым Samsung оснащает свои смартфоны напоминает нам о старых добрых временах, когда телефоны-раскладушки оснащались небольшим дополнительным дисплеем на задней части крышки. Если вы ни разу не видели S View – то это обычный чехол в виде к
Блокировка в случае кражи или потери телефона
Порою случаются такие моменты, когда возникает необходимость произвести блокировку своей сим карты на определённый период времени. Возможно вы хотите в последствии изменить свой тарифный план или вовсе перестать пользоваться услугами своего мобильного опе
Прошивка телефона, смартфона и планшета ZTE
On this page, you will find the official link to download ZTE Blade L3 Stock Firmware ROM (flash file) on your Computer. Firmware comes in a zip package, which contains Flash File, Flash Tool, USB Driver and How-to Flash Manual. How to FlashStep 1 : Downl
Завис компьютер — какие клавиши нажать на клавиатуре, как перезагрузить или выключить
F1- вызывает «справку» Windows или окно помощи активной программы. В Microsoft Word комбинация клавиш Shift+F1 показывает форматирование текста; F2- переименовывает выделенный объект на рабочем столе или в окне проводника; F3- открывает окно поиска файла