Подготовительная фаза репродукции вирусов. Этапы репродукции вирусов Для приготовления живых вакцин используют также гетеротипичные антигенно-родственные апатогенные штаммы: штаммы вируса оспы голубей для профилактики оспы кур, вирус кори для защиты собак

Не осуществляется бинарным делением. Еще в 50-х годах прошлого века было установлено, что размножение осуществляется методом репродукции (в переводе с англ. reproduce - делать копию, воспроизводить), то есть путем воспроизведения нуклеиновых кислот, а также синтеза белка с последующим сбором вирионов. Данные процессы происходят в различных частях клетки так называемого хозяина (к примеру, в ядре или цитоплазме). Данный разобщенный метод репродукции вирусов называется дизъюнктивным. Именно на этом мы и остановимся подробнее в нашей статье.

Процесс репродукции

Данный процесс имеет свои особенности репродукции вирусов и отличается последовательной сменой некоторых стадий. Рассмотрим их по отдельности.

Фазы

Вирусная репродукция в клетке осуществляется в несколько фаз, которые описаны ниже:

  1. Первая фаза представляет собой адсорбцию вируса, о которой речь шла выше, на поверхности клетки, которая является чувствительной к этому вирусу.
  2. Вторая представляет собой проникновение вируса в клетки хозяина методом виропексиса.
  3. Третья - это некое «раздевание» вирионов, высвобождение нуклеиновой кислоты от капсида и суперкапсида. У ряда вирусов попадание нуклеиновой кислоты в клетки происходит методом слияния вирионной оболочки и клетки-хозяина. В данном случае третья и вторая фазы объединяются в единую.

Адсорбция

Под этой стадией репродукции вирусов подразумевается проникновение вирусной частицы в клетки. Адсорбция начинается на клеточной поверхности при помощи взаимодействия клеточных, а также вирусных рецепторов. В переводе с латинского слово "рецепторы" означает "принимающий". Они представляют собой специальные чувствительные образования, которые воспринимают раздражения. Рецепторы - это молекулы либо молекулярные комплексы, расположенные на поверхности клеток, а также способны распознавать химические специфические группировки, молекулы либо другие клетки, связывать их. У наиболее сложных вирионов такие рецепторы располагаются с внешней оболочки в виде шиповидного выроста или ворсинки, у простых вирионов они находятся, как правило, на поверхности капсида.

Механизм адсорбции на поверхности восприимчивой клетки основывается на взаимодействии рецепторов с так называемыми комплементарными рецепторами "хозяйской" клетки. Рецепторы вириона и клетки являются некими специфическими структурами, которые расположены на поверхности.

Аденовирусы и миксовирусы адсорбируются непосредственно на мукопротеиновых рецепторах, а арбовирусы и пикорнавирусы ― на липопротеиновых рецепторах.

У вириона миксовирусов нейраминидаза разрушает мукогфотеиновый рецептор и отщепляет N-ацетилнейраминовые кислоты от олигосахарида, который содержит в себе галактозу и галактозамин. Их взаимодействия на данном этапе обратимы, ведь на них значительно влияет температура, реакция среды и солевые компоненты. Адсорбции вириона препятствуют гепарин и сульфатированные полисахариды, несущие при этом отрицательный заряд, однако их ингибирующее воздействие снимается некоторыми поликарионами (экмолин, ДЭАЭ-декстран, протаминсулъфат), нейтрализующие отрицательный заряд от сульфатированных полисахаридов.

Попадание вириона в "хозяйскую" клетку

Путь внедрения вируса в чувствительную к нему клетку не всегда будет одним и тем же. Многие вирионы способны проникать в клетки методом пиноцитоза, что в переводе с греческого означает "пить", "выпивать". При данном методе пиноцитозная вакуоль будто бы втягивает вирион непосредственно внутрь клетки. Остальные вирионы могут проникать в клетку напрямую сквозь ее оболочку.

Контакт фермента нейраминидаза с клеточными мукопротеидами способствует попаданию вирионов в клетку среди миксовирусов. Результаты исследований последних лет доказывают, что ДНК и РНК вирионов от внешней оболочки не отделяются, т. е. вирионы проникают целиком в чувствительные клетки путем пиноцитоза или виропексиса. На настоящий момент это подтверждено в отношении вируса оспы, осповакцины, а также других вирусов, выбирающих средой обитания организм животных. Если говорить о фагах, они заражают нуклеиновой кислотой клетки. Механизм заражения основывается на том, что те вирионы, которые содержатся в вакуолях клеток, гидролизуются ферментами (липаз, протеаз), в процессе чего от оболочки фага освобождается ДНК и попадает в клетку.

Для проведения эксперимента выполнялось заражение клетки с помощью нуклеиновой кислоты, которая была выделена от некоторых вирусов, и вызывается один полный цикл репродукции вирионов. Однако в естественных условиях инфицирования при помощи такой кислоты не происходит.

Дезинтеграция

Следующий этап репродукции вирусов - дезинтеграция, которая представляет собой освобождение НК от капсида и внешней оболочки. После попадания вириона в клетки, капсид переживает некоторые изменения, приобретая чувствительность к клеточному протеазу, затем он разрушается, параллельно освобождая НК. У отдельных бактериофагов в клетки попадает свободная НК. Фитопатогенный вирус проникает через повреждение в клеточной стенке, а затем он адсорбируется на внутреннем клеточном рецепторе с одновременным высвобождением НК.

Репликация РНК и синтез вирусного белка

Следующим этапом репродукции вирусов является синтез вирусоспецифичного белка, который происходит с участием так называемых информационных РНК (у отдельных вирусов они находятся в составе вирионов, а у некоторых синтезируются только в зараженных клетках непосредственно на матрице вирионной ДНК или РНК). Происходит репликация вирусной НК.

Процесс репродукция РНК-вирусов начинается после попадания нуклеопротеидов в клетку, где формируются вирусные полисомы методом комплексирования РНК с рибосомами. После этого синтезируются и ранние белки, куда следует отнести репрессоры из клеточного метаболизма, а также РНК-полимеразы, которые транслируются с родительской молекулой РНК. В цитоплазме наиболее мелких вирусов, либо в ядре, образуется вирусная двунитчатая РНК методом комплексирования родительской плюс-цепи («+» - РНК-цепь) с опять синтезированной, а также комплементарной с ней минус-цепи («-» - РНК-цепи). Соединение данных нитей из нуклеиновой кислоты провоцирует образование лишь однонитчатой структуры РНК, которая называется репликативной формой. Синтезы вирусной РНК осуществляются репликативными комплексами, в которых принимают участие репликативная форма РНК, фермент РНК-полимеразы, полисомы.

Существует 2 вида РНК-полимераз. К таковым относятся: РНК-полимераза I, которая катализирует формирование репликативной формы непосредственно на матрице плюс-цепи, а также РНК-полимераза II, которая принимает участие в синтезе однонитчатой вирусной РНК на матрице репликативного типа. Синтез нуклеиновых кислот у мелких вирусов происходит в цитоплазме. Что касается вируса гриппа, то в ядре синтезируется внутренний белок и РНК. РНК выделяется затем из ядра и проникает в цитоплазму, в которой совместно с рибосомами начинает синтезировать вирусный белок.

После попадания вирионов в клетки, в них подавляется синтез нуклеиновой кислоты, а также клеточных белков. При репродукции на матрице в ядре синтезируется еще и-РНК, которая несет в себе информацию для синтеза белка. Механизм синтеза вирусного белка осуществляется на уровне клеточной рибосомы, а источником построения будет аминокислотный фонд. Активизация аминокислот осуществляется ферментами, при помощи и-РНК переносятся непосредственно в рибосомы (полисомы), в которых они располагаются уже в синтезированной молекуле белков.

Таким образом, в зараженных клетках синтез нуклеиновых кислот и белков вириона осуществляется в составе репликативно-транскриптивного сложного комплекса, который регулируется некой системой механизма.

Морфогенез вириона

Образование вирионов может произойти только в случае строго упорядоченного соединения структурных вирусных полипептидов, а также их НК. А это обеспечивается так называемой самосборкой молекул белка около НК.

Формирование вириона

Формирование вириона происходит с участием некоторых структурных компонентов, входящих в состав клетки. Вирусы герпеса, полиомиелита и осповакцины образуются в цитоплазме, а аденовирусы ― в ядре. Синтез вирусной РНК, а также формирование нуклеокапсида происходит непосредственно в ядре, а гемагглютинин формируется в цитоплазме. После этого нуклеокапсид перебирается из ядра в цитоплазму, в которой осуществляется образование оболочки вириона. Нуклеокапсид покрывается снаружи вирусными белками, а в состав вириона при этом включаются гемагглютинины и нейраминидазы. Именно таким образом происходит образование потомства, например, вируса гриппа.

Высвобождение вириона из "хозяйской" клетки

Из "хозяйской" клетки частицы вируса выделяются одновременно (во время разрушения клеток) либо постепенно (без каких-либо разрушений клеток).

Именно в таком виде и происходит репродукция вирусов. Вирионы высвобождаются из клеток, как правило, двумя способами.

Первый метод

Первый способ подразумевает следующее: после абсолютного созревания вирионов непосредственно внутри клетки они округляются, там образуются вакуоли, а затем разрушается и клеточная оболочка. По завершению этих процессов вирионы выходят все одновременно и полностью из клеток (пикорнавирусы). Данный способ принято называть литическим.

Второй метод

Второй способ подразумевает процесс освобождения вирионов по мере их созревания в течение 2―6 часов на цитоплазматической мембране (миксовирусы и арбовирусы). Выделению из клетки миксовирусов способствует нейраминидазы, разрушающие клеточную оболочку. Во время этого способа 75-90 % вирионов выходят спонтанно в культуральную среду, а клетки постепенно погибают.

Подборка по базе: Ответы на вопросы по тесту по БЖД.docx , ИИСиТ - вопросы 2018 ответы.docx , Контрольные вопросы для самостоятельной подготовки.docx , менеджмент теория вопросы.docx , ДКБ вопросы к экзамену.docx , 30 ответов на вопросы о беге.pdf , Тестовые вопросы.docx , тесты, вопросы 8РЯ.doc , Контрольные вопросы и задания с ответами для допуска к компьютер , Деловые и науч ком Темы. Вопросы к зачету.doc .
СОДЕРЖАНИЕ

Контрольные вопросы:

1. Репродукция ДНК-геномных вирусов: основные этапы, особенности репродукции…………………………………………………..……........……...3

2. Признаки репродукции вирусов в живых системах: лабораторные животные, куриные эмбрионы, культуры клеток…………………………………………......……………………..………16

3. Задача....................................................................................................20

Список литературы……………………………...……………………...........25

1.Репродукция ДНК-геномных вирусов: основные этапы, особенности репродукции

Репродукция вирусов

Процесс репродукции вирусов может быть условно разделен на две фазы. Первая фаза охватывает события , которые ведут к адсорбции и проникновению вируса в клетку, освобождению его внутреннего компонента и модификации его таким образом, что он способен вызвать инфекцию. Соответственно, первая фаза включает в себя три стадии: 1) адсорбция вируса на клетках; 2) проникновение вируса в клетки; 3) раздевание вируса в клетке. Эти стадии направлены на то, чтобы вирус был доставлен в соответствующие клеточные структуры, и его внутренний компонент был освобожден от защитных оболочек. Как только эта цель достигнута, начинается вторая фаза репродукции, в течение которой происходит экспрессия вирусного генома. Эта фаза включает в себя стадии: 1) транскрипции, 2) трансляции информационных РНК, 3) репликации генома, 4) сборки вирусных компонентов. Заключительной стадией репродукции является выход вируса из клетки.

Первая фаза репродукции.

I. Адсорбция вирионов на поверхности клетки.

Взаимодействие вируса с клеткой начинается с процесса адсорбции, т. е. прикрепления вирусных частиц к клеточной поверхности. Процесс адсорбции возможен при наличии соответствующих рецепторов на поверхности клетки и «узнающих» их субстанций на поверхности вируса. Самые начальные процессы адсорбции имеют неспецифический характер, и в основе их может лежать электростатическое взаимодействие положительно и отрицательно заряженных группировок на поверхности вируса и клетки. Однако узнавание клеточных рецепторов вирусными белками, ведущее к прикреплению вирусной частицы к клетке, является высоко специфическим процессом. Белки на поверхности вируса, узнающие специфические группировки на плазматической мембране клетки и обусловливающие прикрепление к ним вирусной частицы, называются прикрепительными белками.

Вирусы используют рецепторы, предназначенные для прохождения в клетку необходимых для ее жизнедеятельности веществ: питательных веществ, гормонов, факторов роста и т. д. Рецепторы могут иметь разную химическую природу и представлять собой белки, углеводный компонент белков и липидов, липиды. Рецепторами для вирусов гриппа и парамиксовирусов является сиаловая кислота в составе гликопротеидов и гликолипидов (ганглиозидов), для рабдовирусов и реовирусов - также углеводный компонент в составе белков и липидов, для пикорнавирусов и аденовирусов - белки, для некоторых вирусов - липиды. Специфические рецепторы играют роль не только в прикреплении вирусной частицы к клеточной поверхности. Они определяют дальнейшую судьбу вирусной частицы, ее внутриклеточный транспорт и доставку в определенные участки цитоплазмы и ядра, где вирус способен инициировать инфекционный процесс. Вирус может прикрепиться и к неспецифическим рецепторам и даже проникнуть в клетку, однако только прикрепление к специфическому рецептору приведет к возникновению инфекции.

Прикрепление вирусной частицы к клеточной поверхности вначале происходит путем образования единичной связи вирусной частицы с рецептором. Однако такое прикрепление непрочно, и вирусная частица может легко оторваться от клеточной поверхности - обратимая адсорбция. Для того чтобы наступила необратимая адсорбция, должны появиться множественные связи между вирусной частицей и многими молекулами рецепторов, т. е. должно произойти стабильное мультивалентное прикрепление. Количество молекул клеточных рецепторов в участках адсорбции может доходить до 3000. Стабильное связывание вирусной частицы с клеточной поверхностью в результате мультивалентного прикрепления происходит благодаря возможности свободного перемещения молекул рецепторов в липидном бислое плазматической мембраны, которое определяется подвижностью, «текучестью» белково-липидного слоя. Увеличение текучести липидов является одним из наиболее ранних событий при взаимодействии вируса с клеткой, следствием которого является формирование рецепторных полей в месте контакта вируса с клеточной поверхностью и стабильное прикрепление вирусной частицы к возникшим группировкам.

Количество специфических рецепторов на поверхности клетки колеблется между 104 и 105 на одну клетку. Рецепторы ряда вирусов могут быть представлены лишь в ограниченном наборе клеток-хозяев, и этим может определяться чувствительность организма к данному вирусу. Например, пикорнавирусы адсорбируются только на клетках приматов. Рецепторы для других вирусов, напротив, широко представлены на поверхности клеток различных видов , как, например, рецепторы для ортомиксовирусов и парамиксовирусов, представляющие собой сиалил-содержащие соединения. Поэтому эти вирусы имеют относительно широкий диапазон клеток, на которых может происходить адсорбция вирусных частиц. Рецепторами для ряда тогавирусов обладают клетки исключительно широкого круга хозяев: эти вирусы могут адсорбироваться и инфицировать клетки как позвоночных, так и беспозвоночных.

II. Проникновение вируса в клетку.

Исторически сложилось представление о двух альтернативных механизмах проникновения в клетку вирусов животных - путем виропексиса (эндоцитоза) и путем слияния вирусной и клеточной мембран. Однако оба эти механизма не исключают, а дополняют друг друга

Термин «виропексис», означает, что вирусная частица попадает в цитоплазму в результате инвагинации участка плазматической мембраны и образования вакуоли, которая содержит вирусную частицу.

Рецепторный эндоцитоз. Виропексис представляет собой частный случай рецепторного или адсорбционного эндоцитоза. Этот процесс является обычным механизмом, благодаря которому в клетку поступают питательные и регуляторные белки, гормоны, липопротеины и другие вещества из внеклеточной жидкости. Рецепторный эндоцитоз происходит в специализированных участках плазматической мембраны, где имеются специальные ямки, покрытые со стороны цитоплазмы особым белком с большой молекулярной массой - клатрином. На дне ямки располагаются специфические рецепторы. Ямки обеспечивают быструю инвагинацию и образование покрытых клатрином внутриклеточных вакуолей. Полупериод проникновения вещества внутрь клетки по этому механизму не превышает 10 мин с момента адсорбции. Количество образующихся в одну минуту вакуолей достигает более 2000. Таким Образом, рецепторный эндоцитоз представляет собой хорошо слаженный механизм, который обеспечивает быстрое проникновение в клетку чужеродных веществ.

Покрытые вакуоли сливаются с другими, более крупными цитоплазматическими вакуолями, образуя рецептосомы, содержащие рецепторы, но не содержащие клатрин, а те в свою очередь сливаются с лизосомами. Таким путем проникшие в клетку белки обычно транспортируются в лизосомы, где происходит их распад на аминокислоты; они могут и миновать лизосомы, и накапливаться в других участках клетки в недеградированной форме. Альтернативой рецепторного эндоцитоза является жидкостный эндоцитоз, когда инвагинация происходит не в специализированных участках мембраны. Большинство оболочечных и безоболочечных вирусов животных проникает в клетку по механизму рецепторного эндоцитоза. Эндоцитоз обеспечивает внутриклеточный транспорт вирусной частицы в составе эндоцитарной вакуоли, поскольку вакуоль может двигаться в любом направлении и сливаться с клеточными мембранами (включая ядерную мембрану), освобождая вирусную частицу в соответствующих внутриклеточных участках. Таким путем, например, ядерные вирусы попадают в ядро, а реовирусы - в лизосомы. Однако проникшие в клетку вирусные частицы находятся в составе вакуоли и отделены от цитоплазмы ее стенками. Им предстоит пройти ряд этапов, прежде чем они смогут вызвать инфекционный процесс.

Слияние вирусной, и клеточной мембран. Для того чтобы внутренний компонент вируса мог пройти через клеточную мембрану, вирус использует механизм слияния мембран. У оболочечных вирусов слияние обусловлено точечным взаимодействием вирусного белка слияния с липидами клеточной мембраны, в результате которого вирусная липопротеидная оболочка интегрирует с клеточной мембраной, а внутренний компонент вируса оказывается по другую ее сторону. У безоболочечных вирусов один из поверхностных белков также взаимодействует с липидами клеточных мембран, в результате чего внутренний компонент проходит через мембрану. Большинство вирусов животных выходит в цитозол из рецептосомы.

Если при эндоцитозе вирусная частица является пассивным пассажиром, то при слиянии она становится активным участником процесса. Белком слияния является один из ее поверхностных белков. К настоящему времени этот белок идентифицирован лишь у парамиксовирусов и ортомиксовирусов. У парамиксовирусов этот белок (Р-белок) представляет собой один из двух гликопротеидов, находящихся на поверхности вирусной частицы. Функцию белка слияния у вируса гриппа выполняет малая гемагглютинирующая субъединица.

Парамиксовирусы вызывают слияние мембран при нейтральном рН, и внутренний компонент этих вирусов может проникать в клетку непосредственно через плазматическую мембрану. Однако большинство оболочечных и безоболочечных вирусов вызывают слияние мембран только при низком значении рН - от 5,0 до 5,75. Если к клеткам добавить слабые основания (хлорид аммония, хлороквин и др.), которые в эндоцитарных вакуолях повышают рН до 6,0, слияния мембран не происходит, вирусные частицы остаются в вакуолях , и инфекционный процесс не возникает. Строгая зависимость слияния мембран от значений рН обусловлена конформационными изменениями вирусных белков слияния.

В лизосоме постоянно имеется низкое значение рН (4,9). В эндоцитарной вакуоли (рецептосоме) закисление создается за счет АТФ-зависимого «протонового насоса» еще на клеточной поверхности при образовании покрытой вакуоли. Закисление эндоцитарной вакуоли имеет большое значение для проникающих в клетку физиологических лигандов, так как низкое значение рН способствует диссоциации лиганда от рецептора и рециркуляции рецепторов.

Тот же механизм, который лежит в основе слияния вирусных и клеточных мембран, обусловливает индуцированный вирусами гемолиз и слияние плазматических мембран прилежащих друг к другу клеток с образованием многоядерных клеток, симпластов и синцитиев. Вирусы вызывают два типа слияния клеток: 1) «слияние снаружи» и 2) «слияние изнутри». «Слияние снаружи» происходит при высокой множественности инфекции и обнаруживается в течение первых часов после заражения. Этот тип слияния, описанный для парамиксовирусов, обусловлен белками заражающего вируса и не требует внутриклеточ­ного синтеза вирусных компонентов. Напротив, «слияние изнутри» происходит при низкой множественности инфекции, обнаруживается на сравнительно поздних стадиях инфекционного процесса и обусловлено вновь синтезиро­ванными вирусными белками. «Слияние изнут­ри» описано для многих вирусов: вирусов герпеса, онковирусов, возбудителей медленных инфекций и др. Этот тип слияния вызывают те же вирусные гликопротеиды, которые обеспечивают проникновение вируса в клетку.

III. Раздевание - депротеинизация вируса

Проникшие в клетку вирусные частицы должны раздеться для того, чтобы вызвать инфекционный процесс. Смысл раздевания заключается в удалении вирусных защитных оболочек, которые препятствуют экспрессии вирусного генома. В результате раздевания освобождается внутренний компонент вируса, который способен вызвать инфекционный процесс. Раздевание сопровождается рядом характерных особенностей: в результате распада вирусной частицы исчезает инфекционная активность, в ряде случаев появляется чувствительность к нуклеазам, возникает устойчивость к нейтрализующему действию антител, теряется фоточувствительность при использовании ряда препаратов.

Конечными продуктами раздевания являются сердцевины, нуклеокапсиды или нуклеиновые кислоты. Для ряда вирусов было показано, что продуктом раздевания являются не голые нуклеиновые кислоты, а нуклеиновые кислоты, связанные с внутренним вирусным белком. Например, конечным продуктом раздевания пикорнавирусов является РНК, ковалентно связанная с белком VРg, конечным продуктом раздевания аденовирусов является ДНК, ковалентно связанная с одним из внутренних вирусных белков.

В ряде случаев способность вирусов вызвать инфекционный процесс определяется возможностью их раздевания в клетке данной системы. Тем самым эта стадия является одной из стадий, лимитирующих инфекцию.

Раздевание ряда вирусов происходит в специализированных участках внутри клетки (лизосомах, структурах аппарата Гольджи, околоядерном пространстве, ядерных порах на ядерной мембране). При слиянии вирусной и клеточной мембран проникновение в клетку сочетается с раздеванием.

Раздевание и внутриклеточный транспорт являются взаимосвязанными процессами: при нарушении правильного внутриклеточного транспорта к местам раздевания вирусная частица попадает в лизосому и разрушается лизосомальными ферментами.

Вторая фаза репродукции .

I. Транскрипция.

Транскрипция осуществляется с помощью специального фермента - РНК-полимеразы, который связывает нуклеотиды путем образования 3-5´фосфодиэфирных мостиков. Такое связывание происходит лишь в присутствии ДНК-матрицы.

Продуктами транскрипции в клетке являются иРНК. Сама клеточная ДНК, являющаяся носителем генетической информации, не может непосредственно программировать синтез белка. Передачу генетической информации от ДНК к рибосомам осуществляет РНК-посредник. На этом основана центральная догма молекулярной биологии, которая выражается следующей формулой:

ДНК - транскрипция - РНК - трансляция - белок,

где стрелки показывают направление переноса генетической информации.

Реализация генетической информации у вирусов. Стратегия вирусного генома в отношении синтеза иРНК у разных вирусов различна. У ДНК-содержащих вирусов иРНК синтезируется на матрице одной из нитей ДНК. Формула переноса генетической информации у них такая же, как и в клетке:

ДНК - транскрипция - РНК - трансляция - белок.

ДНК-содержащие вирусы, репродукция которых происходит в ядре, используют для транскрипции клеточную полимеразу. К этим вирусам относятся паповавирусы, аденовирусы, вирусы герпеса. ДНК-содержащие вирусы, репродукция которых происходит в цитоплазме, не могут использовать клеточный фермент , находящийся в ядре. Транскрипция их генома осуществляется вирусспецифическим ферментом - ДНК-полимеразой, которая проникает в клетку в составе вируса. К этим вирусам относятся вирусы оспы и иридовирусы.

Ферменты, транскрибирующие вирусный геном. Транскрипция ряда ДНК-содержащих вирусов - паповавирусов, аденовирусов, вирусов герпеса, парвовирусов, гепаднавирусов. Осуществляется в ядре клетки, и в этом процессе широко используются механизмы клеточной транскрипции - ферменты транскрипции и дальнейшей модификации транскриптов. Транскрипция этих вирусов осуществляется клеточной РНК-полимеразой II - ферментом, который осуществляет транскрипцию клеточного генома. Однако особая группа транскриптов аденовируса синтезируется с помощью другого клеточного фермента - РНК-полимеразы III. У двух других семейств ДНК-содержащих вирусов животных - вирусов оспы и иридовирусов - транскрипция происходит в цитоплазме. Поскольку в цитоплазме нет клеточных полимераз, транскрипция этих вирусов нуждается в специальном вирусном ферменте - вирусной РНК-полимеразе. Этот фермент является структурным вирусным белком.

Регуляция транскрипции. Транскрипция вирусного генома строго регулируется на протяжении инфекционного цикла. Регуляция осуществляется как клеточными, так и вирусспецифическими механизмами. У некоторых вирусов, в основном ДНК-содержащих, существует три периода транскрипций - сверхранняя, ранняя и поздняя. К этим вирусам относятся вирусы оспы, герпеса, паповавирусы, аденовирусы. В результате сверхранней и ранней транскрипции избирательно считываются сверхранние и ранние гены с образованием сверхранних или ранних иРНК. При поздней транскрипции считывается другая часть вирусного генома - поздние гены, с образованием поздних иРНК. Количество поздних генов обычно превышает количество ранних генов. Многие сверхранние гены являются генами для неструктурных белков - ферментов и регуляторов транскрипции и репликации вирусного генома. Напротив, поздние гены обычно являются генами для структурных белков. Обычно при поздней транскрипции считывается весь геном, но с преобладанием транскрипции поздних генов.

Фактором регуляции транскрипции у ядерных вирусов является транспорт транскриптов из ядра в цитоплазму, к месту функционирования иРНК - полисомам.

Продуктом сверхранней транскрипции вирусов герпеса являются А-белки. Функция одного или нескольких из них необходима для транскрипции следующей группы генов, кодирующих Р-белки. В свою очередь Р-белки включают транскрипцию последней группы поздних генов, кодирующих У-белки. Такой тип регуляции получил название «каскадной».

II. Трансляция.

Это - процесс перевода генетической информации, содержащейся в иРНК на специфическую последовательность аминокислот в синтезируемых вирусспецифических белках. Синтез белка в клетке происходит в результате трансляции иРНК на рибосомах. В рибосомах идет слияние потока информации (в иРНК) с потоком аминокислот, которые приносят транспортные РНК (тРНК). В клетке существует большое количество разнообразных тРНК. Для каждой аминокислоты должна быть своя тРНК.

Молекула тРНК представляет собой односпиральную РНК со сложной структурой в виде кленового листа.

Связывание конкретной тРНК и аминокислоты осуществляет фермент аминоацилсинтетаза. Один конец тРНК связывается с аминокислотой, а другой - с нуклеотидами иРНК, которым они комплементарны. Три нуклеотида на иРНК кодируют одну аминокислоту и называются «триплет» или «кодон», а комплементарные кодону три нуклеотида на тРНК называются «антикодоном».

Процесс транскрипции состоит из трех фаз: инициации элонгации, терминации.

Инициация трансляции - наиболее ответственный этап в процессе трансляции, основанный на узнавании рибосомой иРНК и связывании с ее особыми участками. Рибосома узнает иРНК благодаря «шапочке» (кэп) на 5′-конце и скользит к 3′-концу, пока не достигнет инициаторного кодона, с которого начинается трансляция. В эукариотической клетке инициаторными кодонами являются кодоны АУГ (аденин, урацил, гуанин), кодирующие метионин. С метионина начинается синтез всех полипептидных цепей. Специфическое узнавание рибосомой вирусной и РНК осуществляется за счет вирусспецифических инициаторных факторов.

Вначале с иРНК связывается малая рибосомальная субъединица. К комплексу иРНК с малой рибосомальной субъединицей присоединяются другие компоненты, необходимые для начала трансляции. Это - несколько молекул белка, которые называются «инициаторные факторы». Их, по крайней мере, три в прокариотической клетке и более девяти в эукариотической клетке. Инициаторные факторы определяют узнавание рибосомой специфических иРНК. В результате формируется комплекс, необходимый для инициации трансляции, который называется «инициаторным комплексом». В инициаторный комплекс входят: иРНК; малая рибосомальная субъединица; аминоацил-тРНК, несущая инициаторную аминокислоту; инициаторные факторы; несколько молекул ГТФ (гуанозинтрифосфат).

В рибосоме осуществляется слияние потока информации с потоком аминокислот. Вхождение аминоацил-тРНК в А-центр большой рибосомальной субъединицы является следствием узнавания, а ее антикодон взаимодействует с кодоном иРНК, находящейся в малой рибосомальной субъединице. При продвижении иРНК на один кодон тРНК перебрасывается в пептидильный центр (П-центр), и ее аминокислота присоединяется к инициаторной аминокислоте с образованием первой пептидной связи. Свободная от аминокислоты тРНК выходит из рибосомы и может опять функционировать в транспорте специфических аминокислот. На ее место из A-центра в П-центр перебрасывается новая тРНК, и образуется новая пептидная связь. В A-центре появляется вакантный кодон иРНК, к которому немедленно присоединяется соответствующая тРНК, и происходит присоединение новых аминокислот к растущей полипептидной цепи.

Элонгация трансляции - процесс удлинения, наращивания полипептидной цепи, основанный на присоединении новых аминокислот с помощью пептидной связи. Происходит постоянное протягивание нити иРНК через рибосому и «декодирование» заложенной в ней генетической информации. Часто иРНК функционирует одновременно на нескольких рибосомах, каждая из которых синтезирует одну и ту же полипептидную нить , кодируемую данной иРНК.

Терминация трансляции происходит в тот момент, когда рибосома доходит до терминирующего кодона в составе иРНК (УАА, УГА, УАГ). Трансляция прекращается, и полипептидная цепь освобождается из полирибосомы. После окончания трансляции полирибосомы распадаются на субъединицы, которые могут войти в состав новых полирибосом.

Каждая и PHК функционирует на нескольких рибосомах. Группу рибосом, работающих на одной молекуле иРНК, называют полирибосомой или полисомой. Полисомы могут состоять от 4-6 до 20 и более рибосом.

Вирусспецифические полисомы могут быть как свободными, так и связанными с мембранами. Внутренние белки обычно синтезируются на свободных полисомах, гликопротеиды всегда синтезируются на полисомах, связанных с мембранами.

Поскольку геном вируса животных представлен молекулой, кодирующей более чем один белок, вирусы поставлены перед необходимостью синтеза либо длинной иРНК, кодирующей один гигантский полипептид-предшественник, который затем должен быть нарезан в специфических точках на функционально активные белки, либо коротких моноцистронных иРНК, каждая из которых кодирует один белок. Таким образом, существуют два способа формирования вирусных белков:

первый - иРНК транслируется в гигантский полипептид-предшественник, который после синтеза последовательно нарезается на зрелые функционально активные белки;

второй - иРНК транслируется с образованием зрелых белков или белков, которые лишь незначительно модифицируются после синтеза.

Первый способ трансляции характерен для РНК-содержащих плюс-нитевых вирусов - пикорнавирусов и тогавирусов. Их иРНК транслируется в гигантскую полипептидную цепь, так называемый полипротеид, который сползает в виде непрерывной ленты с рибосомного «конвейера» и нарезается на индивидуальные белки нужного размера. Нарезание вирусных белков - многоступенчатый процесс, осуществляемый как вирусспецифическими, так и клеточными протеазами.

Второй способ формирования белков характерен для ДНК-содержащих вирусов и большинства РНК-содержащих вирусов. При этом способе синтезируются короткие моноцистронные иРНК в результате избирательной транскрипции одного участка генома (гена). Однако эти вирусы широко используют механизм посттрансляционного нарезания белка.

В эукариотической клетке многие белки, в том числе вирусные, подвергаются посттрансляционным модификациям, зрелые функционально активные белки часто неидентичны их вновь синтезированным предшественникам. Широко распространены такие посттрансляционные ковалентные модификации, как гликозилирование, ацилирование, метилирование, сульфирование (образование дисульфидных связей), протеолитическое нарезание и, наконец, фосфорилирование. В результате вместо 20 генетически закодированных аминокислот из различных клеток разных органов эукариотов выделено около 140 дериватов аминокислот.

Гликозилирование. В составе сложно устроенных PHК - и ДНК-содержащих вирусов имеются белки, содержащие ковалентно присоединенные боковые цепочки углеводов, - гликопротеиды. Гликопротеиды расположены в составе вирусных оболочек и находятся на поверхности вирусных частиц.

Гликозилирование полипептидов - сложный многоступенчатый процесс, первые этапы которого начинаются уже в процессе синтеза полипептидов, и первый углеводный остаток присоединяется к полипептидной цепи, еще не сошедшей с рибосомы. Последующие этапы гликозилирования происходят путем последовательного присоединения углеводных остатков к углеводной цепочке в процессе транспорта полипептида к плазматической мембране. Углеводные остатки присоединяются по одному, и только при инициации синтеза олигосахаридной цепи переносится «блок». Окончательное формирование углеводной цепочки может завершаться на плазматической мембране перед сборкой вирусной частицы.

Гликозилирование влияет на транспорт, более того, транспорт неразрывно связан для гликопротеидов со стадийным гликозилированием. Убедительным доказательством этого служит влияние на вирусную репродукцию ингибиторов гликозилирования ; они полностью подавляют транспорт полипептидов, не нарушая и не ингибируя их синтеза.

При подавлении гликозилирования соответствующими ингибиторами (аналоги сахаров типа 2-дезоксиглкжозы, антибиотик туникамицин) блокируется сборка вирионов миксо-, рабдо-, α-вирусов или образуются неинфекционные вирионы вирусов герпеса и онковирусов.

Сульфирование. Некоторые белки сложно устроенных РНК - и ДНК-содержащих вирусов сульфируются после трансляции. Чаще всего сульфированию подвергаются гликопротеиды, при этом сульфатная группа связывается с углеводными остатками гликопротеида.

Ацилирование. Ряд гликопротеидов сложно устроенных РНК-содержащих вирусов (НА2 вируса гриппа, белок G вируса везикулярного стоматита, белок HN вируса ньюкаслской болезни и др.) содержат ковалентно связанные 1-2 молекулы жирных кислот.

Нарезание. Многие вирусные белки, и в первую очередь гликопротеиды, приобретают функциональную активность лишь после того, как произойдет их нарезание в специфических точках протеолитическими ферментами. Нарезание происходит либо с образованием двух функциональных белковых субъединиц (например, большая и малая субъединицы гемагглютинина вируса гриппа, два гликопротеида (Е2 и ЕЗ) вируса леса Семлики), либо с образованием одного функционально активного белка и неактивного фермента, например белки F и HN парамиксовирусов. Нарезание обычно осуществляется клеточными ферментами. У многих сложно устроенных вирусов животных, имеющих гликопротеиды, нарезание необходимо для формирования активных прикрепительных белков и белков слияния и, следовательно, для приобретения вирусами способности инфицировать клетку. Лишь после нарезания этих белков вирусная частица приобретает инфекционную активность. Таким образом, можно говорить о протеолитической активации ряда вирусов, осуществляемой с помощью клеточных ферментов.

Фосфорилирование. Фосфопротеиды содержатся практически в составе всех вирусов животных - РНК - и ДНК-содержащих, просто и сложно устроенных. В составе большинства вирусов обнаружены протеинкиназы, однако фосфорилирование может осуществляться как вирусными, так и клеточными ферментами. Обычно фосфорилируются белки, связанные с вирусным геномом и осуществляющие регулирующую роль в его экспрессии. С процессом фосфорилирирования связан механизм активного действия интерферона.

III. Репликация.

Репликацией называется синтез молекул нуклеиновой кислоты, гомологичных геному. В клетке происходит репликация ДНК, в результате которой образуются дочерние двунитчатые ДНК. Репликация происходит на расплетенных участках ДНК и идет одновременно на обеих нитях от 5′-конца к 3′-концу.

Поскольку две нити ДНК имеют противоположную полярность, а участок репликации («вилка») движется в одном направлении, одна цепь строится в обратном направлении отдельными фрагментами, которые называются фрагментами Оказаки (по имени ученого, впервые предложившего такую модель). После синтеза фрагменты Оказаки «сшиваются» лигазой в единую нить.

Репликация ДНК осуществляется ДНК-полимеразами. Для начала репликации необходим предварительный синтез короткого участка РНК на матрице ДНК, который называется затравкой. С затравки начинается синтез нити ДНК, после чего РНК быстро удаляется с растущего участка.

Репликация вирусных ДНК. Репликация генома ДНК-содержащих вирусов в основном катализируется клеточными фрагментами и механизм ее сходен с механизмом репликации клеточной ДНК.

Каждая вновь синтезированная молекула ДНК состоит из одной родительской и одной вновь синтезированной нити. Такой механизм репликации называется полуконсервативным.

У вирусов, содержащих кольцевые двунитчатые ДНК (паповавирусы), разрезается одна из нитей ДНК, что ведет к раскручиванию и снятию супервитков на определенном участке молекулы.

Видна нижняя суперспирализованная часть молекулы, расплетенная часть на большом участке и вновь образуемые репликационные петли.

При репликации однонитчатых ДНК (семейство парвовирусов) происходит образование двунитчатых форм, которые представляют собой промежуточные репликативные формы.

Репликативные комплексы. Поскольку образующиеся нити ДНК и РНК некоторое время остаются связанными с матрицей, в зараженной клетке формируются репликативные комплексы, в которых осуществляется весь процесс репликации (а в ряде случаев также и транскрипции) генома. Репликативный комплекс содержит геном, репликазу и связанные с матрицей вновь синтезированные цепи нуклеиновых кислот. Вновь синтезированные геномные молекулы немедленно ассоциируются с вирусными белками, поэтому в репликативных комплексах обнаруживаются антигены. В процессе репликации возникает частично двунитчатая структура с однонитчатыми «хвостами», так называемый репликативный предшественник.

Репликативные комплексы ассоциированы с клеточными структурами либо с предсуществующими, либо вирусиндуцируемыми. Например, репликативные комплексы пикорнавирусов ассоциированы с мембранами эндоплазматической сети , вирусов оспы - с цитоплазматическим матриксом, репликативные комплексы аденовирусов и вирусов герпеса в ядрах находятся в ассоциации со вновь сформированными волокнистыми структурами и связаны с ядерными мембранами. В зараженных клетках может происходить усиленная пролиферация клеточных структур, с которыми связаны репликативные комплексы, или их формирование из предсуществующего материала. Например, в клетках, зараженных пикорнавирусами, происходит пролиферация гладких мембран. В клетках, зараженных реовирусами, наблюдается скопление микротрубочек; в клетках, зараженных вирусами оспы, происходит формирование цитоплазматического матрикса.

В репликативных комплексах одновременно с синтезом геномных молекул осуществляется транскрипция и происходит сборка нуклеокапсидов и сердцевин, а при некоторых инфекциях - и вирусных частиц.

Регуляция репликации. Вновь образованная молекула геномной РНК может быть использована различным образом. Она может ассоциироваться с капсидными белками и войти в состав вириона, служить матрицей для синтеза новых геномных молекул, либо - для образования иРНК, наконец, у «плюс»-нитевых вирусов она может выполнять функции иРНК и связываться с рибосомами. В клетке существуют механизмы, регулирующие использование геномных молекул. Регуляция идет по принципу саморегуляции и реализуется путем взаимодействия вирусных РНК и белков благодаря возможности белок-нуклеинового и белок-белкового узнавания. Например, роль терминального белка пикорнавирусов заключается в запрещении трансляции иРНК и отборе молекул для формирования вирионов. Белок, связывающийся с 5′-концом геномной РНК, в свою очередь узнается капсидными белками и служит сигналом для сборки вирусной частицы с участием данной молекулы РНК. По тому же принципу отбираются геномные молекулы РНК у «минус»-нитевых вирусов. Молекула РНК входит в состав вириона или служит матрицей для репликации. Для переключения ее на транскрипцию должен возникнуть запрет белок-нуклеинового взаимодействия. В репликации ДНК аденовирусов участвует молекула белка, которая связывается с концом вирусной ДНК и необходима для начала репликации. Таким образом, для начала репликации необходим синтез вирусных белков: в присутствии ингибиторов белкового синтеза отсутствует переключение транскрипции на репликацию.

IV. Сборка вирусных частиц.

Синтез компонентов вирусных частиц в клетке разобщен и может протекать в разных структурах ядра и цитоплазмы. Вирусы, репликация которых проходит в ядрах, условно называют ядерными. В основном это ДНК-содержащие вирусы: аденовирусы, паповавирусы, парвовирусы, вирусы герпеса.

Вирусы, реплицирующиеся в цитоплазме, называют цитоплазматическими. К ним относятся из ДНК-содержащих вирус оспы и большинство РНК-содержащих вирусов, за исключением ортомиксовирусов и ретровирусов. Однако это разделение весьма относительно, потому что в репродукции тех и других вирусов есть стадии, протекающие соответственно в цитоплазме и ядре.

Внутри ядра и цитоплазмы синтез вирусспецифических молекул также может быть разобщен. Так, например, синтез одних белков осуществляется на свободных полисомах, а других - на полисомах, связанных с мембранами. Вирусные нуклеиновые кислоты синтезируются в ассоциации с клеточными структурами вдали от полисом, которые синтезируют вирусные белки. При таком дисъюнктивном способе репродукции образование вирусной частицы возможно лишь в том случае, если вирусные нуклеиновые кислоты и белки обладают способностью при достаточной концентрации узнавать друг друга в многообразии клеточных белков и нуклеиновых кислот и самопроизвольно соединяться друг с другом, т. е. способны к самосборке.

В основе самосборки лежит специфическое белок-нуклеиновое и белок-белковое узнавание, которое может происходить в результате гидрофобных, солевых и водородных связей, а также стерического соответствия. Белок-нуклеиновое узнавание ограничено небольшим участком молекулы нуклеиновой кислоты и определяется уникальными последовательностями нуклеотидов в некодирующей части вирусного генома. С этого узнавания участка генома вирусными капсидными белками начинается процесс сборки вирусной частицы. Присоединение остальных белковых молекул осуществляется за счет специфических белок-белковых взаимодействий или неспецифических белок-нуклеиновых взаимодействий.

В связи с разнообразием структуры вирусов животных разнообразны и способы формирования вирионов, однако можно сформулировать следующие общие принципы сборки:

У просто устроенных вирусов формируются провирионы, которые затем в результате модификаций белков превращаются в вирионы. У сложно устроенных вирусов сборка осуществляется многоступенчато. Сначала формируются нуклеокапсиды или сердцевины, с которыми взаимодействуют белки наружных оболочек.

Сборка сложно устроенных вирусов (за исключением сборки вирусов оспы и реовирусов) осуществляется на клеточных мембранах. Сборка ядерных вирусов происходит с участием ядерных мембран, сборка цитоплазматических вирусов - с участием мембран эндоплазматической сети или плазматической мембраны, куда независимо друг от друга прибывают все компоненты вирусной частицы.

У ряда сложно устроенных вирусов существуют специальные гидрофобные белки, выполняющие функции посредников между сформированными нуклеокапсидами и вирусными оболочками. Такими белками являются матриксные белки у ряда «минус»-нитевых вирусов (ортомиксовирусов, парамиксовирусов, рабдовирусов).

Сборка нуклеокапсидов, сердцевин, провирионов и вирионов происходит не во внутриклеточной жидкости, а в , предсуществующих в клетке или индуцированных вирусом («фабриках»).

Сложно устроенные вирусы для построения своих частиц используют ряд элементов клетки-хозяина, например липиды, некоторые ферменты, у ДНК-геномного 5V40 - гистоны, у оболочечных РНК-геномных вирусов - актин, а в составе ареновирусов обнаружены даже рибосомы. Клеточные молекулы несут определенные функции в вирусной частице, однако включение их в вирион может явиться и следствием случайной контаминации, как, например, включение ряда ферментов клеточных оболочек или клеточных нуклеиновых кислот.

Сборка ДНК-содержащих вирусов. В сборке ДНК-содержащих вирусов есть некоторые отличия от сборки РНК-содержащих вирусов. Как и у РНК-содержащих вирусов, сборка ДНК-содержащих вирусов является многоступенчатым процессом с образованием промежуточных форм, отличающихся от зрелых вирионов по составу полипептидов. Первый этап сборки заключается в ассоциации ДНК с внутренними белками и формировании сердцевин или нуклеокапсидов. При этом ДНК соединяется с предварительно сформированными «пустыми» капсидами.

В результате связывания ДНК с капсидами появляется новый класс промежуточных форм, которые называются неполными формами. Помимо неполных форм с разным содержанием ДНК, существует другая промежуточная форма в морфогенезе - незрелые вирионы, отличающиеся от зрелых тем, что содержат ненарезанные предшественники полипептидов. Таким образом, морфогенез вирусов тесно связан с модификацией (процессингом) белков.

Сборка ядерных вирусов начинается в ядре, обычно - с ассоциации с ядерной мембраной. Формирующиеся в ядре промежуточные формы вируса герпеса почкуются в перинуклеарное пространство через внутреннюю ядерную мембрану, и вирус приобретает таким путем оболочку, которая является дериватом ядерной мембраны. Дальнейшая достройка и созревание вирионов происходит в мембранах эндоплазматической сети и в аппарате Гольджи, откуда вирус в составе цитоплазматических везикул транспортируется на клеточную поверхность.

У непочкующихся липидсодержащих вирусов - вирусов оспы сборка вирионов происходит в уже описанных цитоплазматических вирусных «фабриках». Липидная оболочка вирусов в «фабриках» формируется из клеточных липидов путем автономной самосборки, поэтому липидный состав оболочек значительно отличается от состава липидов в клеточных мембранах.

V. Выход вирусных частиц из клетки.

Существуют два способа выхода вирусного потомства из клетки:

1) путем «взрыва»;

2) путем почкования.

Выход из клетки путем взрыва связан с деструкцией клетки, нарушением ее целостности, в результате чего находящиеся внутри клетки зрелые вирусные частицы оказываются в окружающей среде. Такой способ выхода из клетки присущ вирусам, не содержащим липопротеидной оболочки (пикорна-, рео-, парво-, папова-, аденовирусы). Однако некоторые из этих вирусов могут транспортироваться на клеточную поверхность до гибели клетки. Выход из клеток путем почкования присущ вирусам, содержащим липопротеидную мембрану, которая является дериватом клеточных мембран. При этом способе клетка может длительное время сохранять жизнеспособность и продуцировать вирусное потомство, пока не произойдет полное истощение ее ресурсов.

Оглавление темы "Вирусология. Репродукция вирусов. Генетика вирусов.":
1. Вирусология. История вирусологии. Шамберлан. Ру. Пастер. Ивановский.
2. Репродукция вирусов. Репродукция +РНК-вирусов. Пикорнавирусы. Репродукция пикорнавирусов.
3. Тогавирусы. Репродукция тогавирусов. Ретровирусы. Репродукция ретровирусов.

5. Репродукция ДНК-вирусов. Репликативный цикл ДНК-содержащих вирусов. Репродукция паповавирусов. Репродукция аденовирусов.
6. Репродукция герпесвирусов. Репликативный цикл герпесвирусов. Поксвирусы. Репродукция поксвирусов.
7. Репродукция вируса гепатита В. Репликативный цикл вируса гепатита В.
8. Генетика вирусов. Характеристика вирусных популяций. Генофонд вирусных популяций.
9. Мутации вирусов. Спонтанные мутации вирусов. Индуцированные мутации вирусов. Проявление мутаций вирусов в фенотипе.
10. Генетические взаимодействия между вирусами. Рекомбинации и перераспределение генов вирусами. Обмен фрагментами генома вирусами. Антигенный шифт.

-РНК-вирусы проникают в клетку путём слияния (парамиксовирусы) либо виропексиса (рабдо- и ортомиксовирусы). Для эффективной репродукции вирусная -РНК должна быть преобразована в +РНК - аналог клеточной мРНК (рис. 5-3).

Рис. 5-3. Репродуктивный цикл -РНК-содержащих вирусов . Проникновение вируса в клетку происходит после его адсорбции и слияния с клеточной оболочкой (1). После высвобождения вирусной -РНК происходит синтез +РНК на матрице -РНК, катализируемый РНК-зависимой РНК-пол имеразой, входящей в состав вириона (2), что приводит к образованию полных и коротких нитей. Короткие +РНК-нити участвуют в синтезе ферментов и белков для дочерних популяций (3). Среди последних особую значимость имеют белок М (4) и гликопротеины оболочки, встраивающиеся в клеточную стенку на этапах, предшествующих отпочковыванию. Полная цепь +РНК служит матрицей для синтеза молекул -РНК дочерних популяций (5). Вирионы дочерних популяций собираются на участках клеточной мембраны, модифицированных белком М (6), и высвобождаются почкованием, захватывая её фрагмент, служащий в дальнейшем суперкапсидом (7).

-РНК-вирусы. Репродукция -РНК-вирусов

Ранняя стадия репродукции . После высвобождения генома вирусная транскриптаза (РНК зависимая РНК-полимераза) запускает синтез +РНК. При этом «шаблоном» для вирусной транскриптазы служит вирусный рибонуклеопротеин (то есть РНК и внутренние белки) В результате образуются полные и короткие молекулы-копии +РНК.

Поздняя стадия репродукции . Полные плюс-нити служат матрицами для синтеза молекул -РНК, составляющих геномы дочерней популяции. Короткие плюс-нити участвуют в синтезе ферментов и белков. Вирусные белки (гемагглютинин и нейраминидаза) взаимодействуют участками клеточной мембраны. Там же сорбируются и вирусные М-белки (белки матрикса) Они проявляют выраженную гидрофобность за счёт содержания до 75% нейтральных аминокислот. Это свойство даёт им способность взаимодействовать с белками и липидами клеточные мембраны и быть посредником сборки вирусных частиц. С одной стороны, М-белок распознает участки включения гликопротеинов вируса в мембрану, с другой - его специфически распознает нуклеокапсид и связывается с ним. Сборка дочерних популяций завершается после присоединения нуклеокапсида к клеточной мембране. Их высвобождение происходит путём почкования через модифицированные участки мембраны. Отпочковывающиеся вирусные частицы захватывают её фрагменты, служащие в дальнейшем суперкапсидами.


Репродукция вирусов с двухнитевыми РНК

Двухнитевые РНК-вирусы представлены семейством Reoviridae (рео- и ротавирусы). Они не имеют суперкапсида и организованы по типу кубической симметрии. С вирусной РНК связана РНК-зависимая РНК-полимераза. Вирусы отличает удлинённый репродуктивный цикл и тенденция к накоплению продуктов вирусспецифического синтеза внутри клеток. После высвобождения генома в цитоплазме клеток РНК-полимераза осуществляет синтез молекул мРНК (+РНК на одной нити -РНК. В результате образуется до 11 функциональных молекул мРНК, соответствуюших по размерам 11 сегментам одной нити -РНК. Молекулы транслируются в 11 первичных полипептидных продуктов. Их последующее расщепление приводит к образованию в заражённых клетках до 16 вторичных полипептидов. Семь первичных и два вторичных полипептида входят в состав вирусных частиц, остальные первичные и вторичные полипептиды выполняют каталитические и регуляторные функции. Параллельно, синтезированная в ходе трансляции вирусная РНК-полимераза запускает синтез минус-нитей на матрице +РНК с последующим их соединением в двухнитевую молекулу РНК. Выход образовавшихся вирионов сопровождается гибелью клетки.

Этапы репродукции вируса

Парамиксовирусы с помощью гликопротеиновых рецепторов адсорбируются на чувствительных клетках хозяина. Проникновение вириона в клетки происходит путем рецепторного эндо-цитоза или при слиянии вирусной оболочки с цитоплазматической мембраной. Репликация вирусной РНК происходит в цитоплазме инфицированных клеток. При формировании вирионов происходит модификация отдельных участков цитоплазматической мембраны клетки-хозяина за счет встраивания в нее с наружной стороны вирусных гликопротеинов, а с внутренней - мембранного белка. К модифицированным участкам клеточной мембраны по актиновым нитям цитоскелета транспортируются вирусные нуклеокапсиды. Выход вирусных частиц осуществляется путем почкования. В цитоплазме инфицированных клеток образуются ацидофильные включения.

Антигенная структура и антигенная вариабельность

Антигенная структура вируса изучена слабо. Морфологическое сходство с вирусом кори человека дало возможность предположить аналогичность их антигенного состава. Основные антигены вируса кори -- гемагглютинин, белок F и нуклеокапсидный белок NP. AT к гемагглютинину и F-протеину проявляют цитотоксическое действие, направленное против инфицированных клеток.

Антигенная вариабельность. Вирус чумы в иммунобиологическом отношении однороден, в то же время по происхождению и некоторым биологическим особенностям его штаммы разделяют на две подгруппы: классические и вариантные. Классические штаммы высокопатогенны и проявляют строгую видовую специфичность.

Гемагглютинирующие и гемадсорбирующие свойства

Вирусная оболочка состоит из трех белков: гемагглютинина (Н), белка слияния (F) и матриксного (М). Также в серологических реакциях у вируса выявлены комплементсвязывающий, преципитирующий, нейтрализующий и гемагглютинирующие антигены. В связи с этим вирус способен нерегулярно агглютинировать эритроциты цыплёнка и морской свинки. Феномен гемагглютинации у вируса считают неспецифическим.

Считается, что рецепторами для адсорбции вируса являются сиаловые кислоты, имеющиеся на мембране макрофагов. В то же время установлено, что вирус чумы плотоядных лишен нейраминидазной активности. Поэтому связывание гемагглютинина с сиаловыми кислотами мембраны носит довольно слабый, лабильный характер, что снижает для вируса опасность "застрять" на поверхности клетки.

Особенности культивирования в различных живых системах

Первые опыты по культивированию вируса чумы плотоядных в эксплантатах ткани проводил Mitscheriich в 1938 г. Позднее его размножали в эсплантатах селезенки, мезентериальных лимфоузлов, легких и тестикул 10-14-дневных щенят. Авторы провели 19 пассажей, при этом титр вируса в эксплантатах селезенки достиг 2?104 ИД/г. Вирус чумы плотоядных активно размножается в первичных культурах клеток почки собак, хорьков, легких собак и хорьков; в первичной культуре клеток почки щенят 3-4 дневного возраста. В этих культурах на среде 199 с добавлением 20% сыворотки телят вирус образует бляшки под агаровым покрытием. В клетках HeLa и линии клеток печени человека вирус не вызывал ЦПЭ.

К вирусу чумы чувствительны и различные культуры клеток после его адаптации пассированием в них. В 1959 году впервые был выделен вирус от больных чумой собак путем культивирования в трипсинизированных кусочков легких или почек. В последующие годы он был также выделен в первичной культуре почек собаки, КРС, овцы, обезьяны, фибробластов эмбрионов кур и перепелов и др. К вирусу чувствительны и перевиваемые линии клеток Hela и Vero. При размножении некоторые штаммы вируса вызывают ЦПД, которое характеризуется зернистостью и округлением клеток с последующим разрушением монослоя и образованием многоядерных клеток и синцитий. Для выделения и поддержания в лабораторных условиях вируса используют молодых щенков. Однако значительно чувствительнее тхорзофретки. Материалами при выделении вируса в культуре клеток служат селезенка, печень, почка.

Вирус размножается в эмбрионах кур при инфицировании на хорионаллантоисную оболочку (ХАО), в аллантоисную полость и желточный мешок. Этот метод успешно используют также и для определения титра вируса на эмбрионах 8-9 -суточного возраста. Вирус титруют на ХАО. При размножении вируса у зараженных эмбрионов появляются изменения главным образом на хорион-аллантоисной оболочке в виде отечности и образования светло-серых узелков величиной с просяное зерно или тяжей светло-серого цвета.

При сравнительном изучении репродукции 3-х штаммов вируса чумы плотоядных на различных клеточных системах установлено, что у 1-го из них (шт. Рокборн) отсутствовало выраженное цитопатическое дейтвие, 2-й штамм накапливался в титре 3,5-5,0 lg ТЦДщ/wi и шт. Акбар-37 накапливался в титре 5,0-6,5 lg ТЦД50/мл (17). Штаммы, адаптированные к куриным эмбрионам, хорошо развиваются в культуре фибробластов куриных эмбрионов, перевиваемых линиях клеток HeLa ("бессмертные" клетки, не имеющие предела Хейфлика), Нер (клетки рака гортани)и др. Максимальное накопление адаптированных штаммов в культуре клеток отмечено на 8-9-й день. Вирус репродуцируется в культуре альвеолярных макрофагов легких собак. Через 2-6 дней в ней формируются характерные круглые многоядерные гигантские клетки, которые через 1-2 недель исчезают с образованием синцития. Адаптированный к клеткам Vero (клетки почки африкаской зеленой мартышки) шт. Green вируса чумы плотоядных способен образовывать бляшки в клетках Нер-2, BS-C-1 и HeLa, но не в клетках Vero и культуре клеток почки собак. Адаптированный к куриным эмбрионам или культуре клеток, вирус может размножаться во многих клеточных системах (собак, КРС, обезьян, человека). Вирус чумы плотоядных вызывает цитопатический эффект и титры его выше в роллерных культурах, чем в стационарных.

Предложен метод крупномасштабного культивирования вируса чумы плотоядных на микроносителях Gelaspker M (Lachema, Bruc) (диаметр 150-200 мкм), для чего клетки куриных эмбрионов или Vero выращивают в виде псевдосуспензионной культуры. При этом биологическое накопление вируса более чем в 10 раз превышало таковое при использовании стационарных культур.

Разработан метод дифференциации патогенных и аттенуированных штаммов вируса чумы плотоядных in vitro. МонАТ реагируют с нуклеокапсидным АГ аттенуированного шт. Onderstepoort, который культивируется в клетках Vero и не реагирует с патогенными шт. А75/17 и СН84, культивируемыми в первичных культурах клеток собак. Однако после нескольких пассажей в клетках Vero штаммы приобретали эпигон, реагирующий с монАТ, одновременно утрачивали патогенность для собак.

Шт. Д84-1 ВЧС, адаптированный к культуре фибробластов КЭ, вызывает выраженные ЦПИ в культуре клеток и незначительное бляшкообразование на ХАО. Шт. Д84-1 генетически стабилен и нейровирулентен для мышат.

Репродукция вирусов. Взаимодействие с хозяеном. Культивирование.

Вирусы не размножаются бинарным делением. В 50-х годах ХХ в. было установлено, что размножение вирусов происходит путем репродукции (англ. reproduce – воспроизводить, делать копию), т.е. путем воспроизведения их нуклеиновых кислот и синтеза белков с последующей сборкой вирионов. Эти процессы происходят в разных частях клетки хозяина (например, в ядре и цитоплазме). Такой разобщенный способ репродукции получил название дизъюнктивного.Репродукция вирусов характеризуется последовательной сменой отдельных стадий:

1) Адсорбция . Проникновение вирусной частицы в клетку начинается с ее адсорбции на клеточной поверхности благодаря взаимодействию клеточных и вирусных рецепторов. Рецепторы (лат. receptor – принимающий) – чувствительные специальные образования, воспринимающие раздражения, это молекулы или молекулярные комплексы на поверхности клеток, способные распознавать специфические химические группировки, молекулы или другие клетки и связывать их. У сложных вирионов рецепторы располагаются на внешней оболочке в виде шиповидных выростов или ворсинок, у простых вирионов – на поверхности капсида.

2) Проникновение вириона в клетку хозяина . Пути внедрения вирусов в чувствительные к ним клетки неодинаковы. Многие вирионы могут проникать в клетку путем пиноцитоза (греч. pino – пить, выпивать), когда образующаяся пиноцитарная вакуоль втягивает вирион внутрь клетки. Другие вирионы могут попадать в клетку прямым путем через ее оболочку.

3) Дезинтеграция (или "раздевание") вириона – освобождение НК от внешней оболочки и капсида. После проникновения вириона в клетку капсид претерпевает изменения, приобретает чувствительность к клеточным протеазам, разрушается, освобождая НК. У некоторых бактериофагов в клетку проникает свободная НК. Фитопатогенные вирусы проникают через повреждения в клеточной стенке, после чего адсорбируются на внутренних клеточных рецепторах и высвобождается НК.

4) Синтез вирусных белков и репликация НК . Синтез вирусоспецифичных белков происходит с участием информационных РНК (у одних вирусов они входят в состав вирионов, а у других синтезируются в зараженных клетках на матрице вирионной РНК или ДНК). Происходит репликация вирусных НК.

5) Сборка, или морфогенез вириона . Формирование вирионов возможно только при условии строго упорядоченного соединения вирусных структурных полипептидов и их НК, что обеспечивается самосборкой белковых молекул вокруг НК

6) Выход вириона из клетки хозяина. Из клетки вирусные частицы выходят одновременно (при разрушении клеток) или постепенно (без разрушения клеток).



Репродукция вируса в клетке происходит в несколько фаз:

· Первая фаза - адсорбция вируса на поверхности клетки, чувстви­тельной к данному вирусу.

· Вторая фаза - проникновение вируса в клетку хозяина путем виропексиса.

· Третья фаза - «раздевание» вирионов, освобождение нуклеи­новой кислоты вируса от суперкапсида и капсида. У ряда вирусов проникновение нуклеиновой кислоты в клетку происходит путем сли­яния оболочки вириона и клетки-хозяина. В этом случае вторая и тре­тья фазы объединяются в одну.

Адсорбция вирионов на клетке. Механизм адсорбции вириона на восприимчивой клетке основан на взаимодействии его рецепторов с комплементарными рецепторами клетки. Рецепторы клетки и вириона являются специфическими структурами, расположенными на их поверхности. Миксовирусы и аденовирусы адсорбируются на мукопротеиновых рецепторах, а пикорнавирусы и арбовирусы ― на липопротеиновых рецепторах. Нейраминидаза у вириона миксовирусов разрушает мукогфотеиновые рецепторы и отщепляет N-ацетилнейраминовую кислоту от олигосахарида, содержащего галактозамин и галактозу. Их взаимодействия на этом этапе обратимы, так как на них влияют температура, солевые компоненты и реакция среды. Адсорбции вириона на клетке препятствуют сульфатированные полисахариды и гепарин, несущие отрицательный заряд, но их ингибирующее действие снимается поликар-тионами (ДЭАЭ-декстран, экмолин, протамннсулъфат), которые нейтрализуют отрицательный заряд сульфатированных полисахаридов.

Проникновение вириона в клетку. Процесс проникновения вирионов в клетку у миксовирусов осуществляется ферментом нейраминидазой, который вступает в непосредственный контакт с мукопротеидами клетки. Научные факты, накопленные за последние годы, показывают, что РНК и ДНК вирионов не отделяются от внешней их оболочки, т. е. вирионы целиком проникают в чувствительную клетку путем виропексиса или пиноцитоза. Это доказано в отношении вирусов оспы, осповакцины и других вирусов животных. Что касается фагов, то они заражают клетки своей нуклеиновой кислотой. Механизм заражения основан на том, что вирионы, содержащиеся в вакуолях клетки, гидролйзуются ферментами (протеаз, липаз). При этом освобождается ДНК от внешней оболочки фага и проникает в клетку.

В эксперименте заражают клетки нуклеиновой кислотой, выделенной от некоторых вирусов, и вызывают один цикл репродукции "вирионов. Но в естественных условиях передача инфекции с помощью инфекционной кислоты не происходит.

Синтез вирусных структурных компонентов. Процессы синтеза компонентов РНК-вирусов происходят после проникновения нуклеопротеидов (вирионов) в клетку, где образуются вирусные полисомы путем комплексирования вирусной РНК с рибосомами. Затем синтезируются ранние белки: ре-прессоры клеточного метаболизма и РНК-полимеразы, транслируемые с родительской молекулой вирусной РНК. В цитоплазме мелких вирусов или в ядре (вирусы гриппа) образуется двунитчатая вирусная РНК путем комплексирования родительской «плюс»-це-почки с вновь синтезированной и комплементарной ей «минус»-це-почкой. Соединение этих нитей нуклеиновой кислоты обусловливает образование однонитчатой структуры РНК, называемой репликативной формой (РФ), которая устойчива к РНК-азе и необходима для репродукции всех РНК-вирусов. Синтез вирусной РНК осуществляется реплекативным комплексом, в котором участвуют фермент РНК-полимеразы, полисомы, репликативная форма РНК. Существуют два типа РНК-полимераз: РНК-полимераза I катализирует образование репликативной формы на матрице «плюс»-це-почки; РНК-полимераза II участвует в синтезе вирусной однонитчатой РНК на матрице репликативной формы. Синтез нуклеиновой кислоты у мелких вирусов осуществляется в цитоплазме. У вируса гриппа в ядре синтезируются РНК и внутренний белок. РНК выходит из.ядра и поступает в цитоплазму, где с рибосомами синтезирует вирусный белок, и образующийся рибонуклеопротеид входит в химический состав вириона.

Синтез компонентов ДНК-вирусов. После проникновения вирионов в клетку в ней подавляется синтез нуклеиновых кислот и клеточных белков. В ядре на матрице ДНК-вируса синтезируется и-РНК, несущая информацию для синтеза белков. Механизм синтеза вирусных белков осуществляется на клеточных рибосомах, и источником их построения является аминокислотный фонд клетки. Активизация аминокислот происходит ферментами, с помощью и-РНК переносятся в рибосомы (полисомы), где они располагаются в синтезированной молекуле белка.

Таким образом, в зараженной клетке синтез нуклеиновой кислоты и белков вириона происходит в составе сложного репликатив-но-транскриптивного комплекса, который, по-видимому, регулируется определенной системой контрольного механизма.

Формирование вириона осуществляется с участием структурных компонентов клетки. Вирусы полиомиелита, герпеса и осповакцины формируются в цитоплазме, а аденовирусов ― в "ядре. Синтез вирусной РНК и образование нуклеокапсида (S-анти-гена) происходит в ядре, а гемагглютцнина (V-антигена) ―в цитоплазме. Затем S-антиген переходит из ядра в цитоплазму, где осуществляется формирование оболочки вириона. S-антиген покрывается вирусными белками, и в состав вириона включаются-гемагглютинины и нейраминидаза. И так происходит формирование потомства вируса гриппа.

Выход вирусов из клетки. Вирионы освобождаются из клеток двумя способами. Первый способ ― после полного созревания вирионов внутри клетки последние округляются, в них образуются вакуоли, разрушается клеточная оболочка; вирионы выходят одновременно и полностью из клетки (рикорнавирусы). Этот способ называется литическим. Второй способ ― вирионы освобождаются по мере созревания их на цитоплазматической мембране в течение 2―6 часов (арбовирусы,и миксовирусы). Освобождению миксовирусов из клетки, по-видимому, способствует нейраминидаза, которая разрушает клеточную оболочку. При этом способе 75― 90% вирионов спонтанно выходят в культуральную среду и клетки погибают постепенно).

 
Статьи по теме:
Как разблокировать телефон
Как разблокировать от оператора ваш Мегафон Login 2 1. Вставляете сим-карту другого сотового оператора в телефон. 2. Включаете Мегафон Login 2 (Megafon Login 2 MS3A) . 3. Должно появится окно для ввода кода разблокировки . 4. Вводите код: 67587048 5. Теп
Asus ZenFone Max ZC550KL — Советы, рекомендации, часто задаваемые вопросы и полезные параметры
Как вставить SIM-карту на свой Asus ZenFone Max? Asus ZenFone Max — это смартфон с двумя SIM-картами и поддерживает соединение 2G / 3G / 4G. SIM-карта, поддерживаемая устройством, является Micro SIM-картой и может быть видна после снятия задней крышки тел
Что такое расширение файла CDR?
CDR-формат — это файл, который был создан в программе Corel DRAW, содержащей растровое или векторное изображение. Компания Corel использует этот формат в собственных продуктах, поэтому его можно открыть также другим программным обеспечением данной компани
Multisim 17 где находится библиотека элементов
Компоненты и библиотеки элементов Multisim 11 Контрольно-измерительные и индикаторные приборы В Multisim имеются измерительные приборы, каждый из которых можно использовать в схеме только один раз. Эти приборы рас­положены в библиотеке контрольно-из