Оперативная память. Оперативная память (RAM — Random Access Метопy) — это массив кристаллических ячеек, способных хранить данные

Оперативная память (RAM - Random Access Метопy ) - это массив кристаллических ячеек, способных хранить данные. Существует много различных типов оперативной памяти, но, с точки зрения физического принципа действия, различают динамическую память (DRAM ) и статическую память (SRAM ).

Ячейки динамической памяти (DRAM ) можно представить в виде микроконденсаторов, способных накапливать заряд на своих обкладках. Это наиболее распространенный и экономически доступный тип памяти. Недостатки этого типа связаны, во-первых, с тем, что как при заряде, так и при разряде конденсаторов неизбежны переходные процессы, то есть запись данных происходит сравнительно медленно. Второй важный недостаток связан с тем, что заряды ячеек имеют свойство рассеиваться в пространстве, причем весьма быстро. Если оперативную память постоянно не “подзаряжать”, утрата данных происходит через несколько сотых долей секунды. Для борьбы с этим явлением в компьютере происходит постоянная регенерация (освежение , подзарядка ) ячеек оперативной памяти. Регенерация осуществляется несколько десятков раз в секунду и вызывает непроизводительный расход ресурсов вычислительной системы.

Ячейки статической памяти (SRAM ) можно представить как электронные микроэлементы - триггеры , состоящие из нескольких транзисторов. В триггере хранится не заряд, а состояние (включен/выключен ), поэтому этот тип памяти обеспечивает более высокое быстродействие, хотя технологически он сложнее и, соответственно, дороже.

Микросхемы динамической памяти используют в качестве основной оперативной памяти компьютера. Микросхемы статической памяти используют в качестве вспомогательной памяти (так называемой кэш-памяти ), предназначенной для оптимизации работы процессора.

Каждая ячейка памяти имеет свой адрес, который выражается числом. В настоящее время в процессорах Intel Pentium и некоторых других принята 32-разрядная адресация, а это означает, что всего независимых адресов может быть 2 32 . Таким образом, в современных компьютерах возможна непосредственная адресация к полю памяти размером 2 32 = 4294967296 байт (4,3 Гбайт). Однако это отнюдь не означает, что именно столько оперативной памяти непременно должно быть в компьютере. Предельный размер поля оперативной памяти, установленной в компьютере, определяется микропроцессорным комплектом (чипсетом ) материнской платы и обычно составляет несколько сот Мбайт.

Одна адресуемая ячейка содержит восемь двоичных ячеек, в которых можно сохранить 8 бит, то есть один байт данных. Таким образом, адрес любой ячейки памяти можно выразить четырьмя байтами.

Представление о том, сколько оперативной памяти должно быть в типовом компьютере, непрерывно меняется. В середине 80-х годов ноле памяти размером 1 Мбайт казалось огромным, в начале 90-х годов достаточным считался объем 4 Мбайт, к середине 90-х годов он увеличился до 8 Мбайт, а затем и до 16 Мбайт. Сегодня минимальным считается размер оперативной памяти 32 Мбайт, а обычным - 64 Мбайт. Очень скоро и эта величина будет превышена в 2-4 раза даже для моделей массового потребления.


Оперативная память к компьютере размещается на стандартных панельках, называемых модулями. Модули оперативной памяти вставляют в соответствующие разъемы на материнской плате. Коли к разъемам есть удобный доступ, то операцию можно выполнять своими руками. Если удобного доступа нет, может потребоваться неполная разборка узлов системного блока, и в таких случаях операцию поручают специалистам.

Конструктивно модули памяти имеют два исполнения - однорядные (SIMM-модули ) и двухрядные (DIММ-модули ). Многие модели материнских плат имеют разъемы как того, гак и другого типа, по комбинировать на одной плате модули разных типов нельзя.

Основными характерно гиками модулей оперативной памяти являются объем памяти и время доступа. SIMM-модули поставляются объемами 4, 8, 16, 32 Мбайт, а DIMM-модули - 16, 32, 64, 128 Мбайт и более. Время доступа показывает, сколько времени необходимо для обращения к ячейкам памяти, чем оно меньше, тем лучше. Время доступа измеряется в миллиардных долях секунды (наносекундах , нс ). Для современных DIMM-модулей оно составляет 7-10 нс.

Сокращенно оперативную память компьютера называют ОЗУ (оперативное запоминающее устройство) или RAM (random access memory - память с произвольным доступом).

Название RAM более точно отражает строение и назначение устройства.

Назначение ОЗУ

  • Хранение данных и команд для дальнейшей их передачи процессору для обработки. Информация может поступать из оперативной памяти не сразу на обработку процессору, а в более быструю, чем ОЗУ, кэш-память процессора.
  • Хранение результатов вычислений, произведенных процессором.
  • Считывание (или запись) содержимого ячеек.

Особенности работы ОЗУ

Оперативная память может сохранять данные лишь при включенном компьютере. Поэтому при его выключении обрабатываемые данные следует сохранять на жестком диске или другом носителе информации. При запуске программ информация поступает в ОЗУ, например, с жесткого диска компьютера. Пока идет работа с программой она присутствует в оперативной памяти (обычно). Как только работа с ней закончена, данные перезаписываются на жесткий диск. Другими словами, потоки информации в оперативной памяти очень динамичны.

ОЗУ представляет собой запоминающее устройство с произвольным доступом . Это означает, что прочитать/записать данные можно из любой ячейки ОЗУ в любой момент времени. Для сравнения, например, магнитная лента является запоминающим устройством с последовательным доступом.

Логическое устройство оперативной памяти

Оперативная память состоит их ячеек, каждая из которых имеет свой собственный адрес. Все ячейки содержат одинаковое число бит. Соседние ячейки имеют последовательные адреса. Адреса памяти также как и данные выражаются в двоичных числах.

Обычно одна ячейка содержит 1 байт информации (8 бит, то же самое, что 8 разрядов) и является минимальной единицей информации, к которой возможно обращение. Однако многие команды работают с так называемыми словами. Слово представляет собой область памяти, состоящую из 4 или 8 байт (возможны другие варианты).

Типы оперативной памяти

Принято выделять два вида оперативной памяти: статическую (SRAM) и динамическую (DRAM). SRAM используется в качестве кэш-памяти процессора, а DRAM - непосредственно в роли оперативной памяти компьютера.

SRAM состоит из триггеров. Триггеры могут находиться лишь в двух состояниях: «включен» или «выключен» (хранение бита). Триггер не хранит заряд, поэтому переключение между состояниями происходит очень быстро. Однако триггеры требуют более сложную технологию производства. Это неминуемо отражается на цене устройства. Во-вторых, триггер, состоящий из группы транзисторов и связей между ними, занимает много места (на микроуровне), в результате SRAM получается достаточно большим устройством.

В DRAM нет триггеров, а бит сохраняется за счет использования одного транзистора и одного конденсатора. Получается дешевле и компактней. Однако конденсаторы хранят заряд, а процесс зарядки-разрядки более длительный, чем переключение триггера. Как следствие, DRAM работает медленнее. Второй минус – это самопроизвольная разрядка конденсаторов. Для поддержания заряда его регенерируют через определенные промежутки времени, на что тратится дополнительное время.

Вид модуля оперативной памяти

Внешне оперативная память персонального компьютера представляет собой модуль из микросхем (8 или 16 штук) на печатной плате. Модуль вставляется в специальный разъем на материнской плате.

По конструкции модули оперативной памяти для персональных компьютеров делят на SIMM (одностороннее расположение выводов) и DIMM (двустороннее расположение выводов) . DIMM обладает большей скоростью передачи данных, чем SIMM. В настоящее время преимущественно выпускаются DIMM-модули.

Основными характеристиками ОЗУ являются информационная емкость и быстродействие. Емкость оперативной памяти на сегодняшний день выражается в гигабайтах.

Устройство и принцип работы оперативной памяти

Оперативная память - это неотъемлемый компонент любой компьютерной системы, эта память хранит в себе данные, необходимые для работы всей системы в определённый момент времени. При создании чипов оперативной памяти используют динамическую память, которая медленнее, но дешевле чем статическая, которая используется при создании кеш памяти процессоров.

Из чего состоит ядро оперативной памяти

Ядро микросхемы оперативной памяти состоит из огромного количества ячеек памяти, которые объединены в прямоугольные таблицы - матрицы. Горизонтальные линейки матрицы называют строками , а вертикальные столбцами . Весь прямоугольник матрицы называться страницей , а совокупность страниц называется банком .

Горизонтальные и вертикальные линии являются проводником, на пересечении горизонтальных и вертикальных линий и находятся ячейки памяти .

Из чего состоит ячейка памяти

Ячейка памяти состоит из одного полевого транзистора и одного конденсатора . Конденсатор выполняет роль хранителя информации, он может хранить один бит данных, то есть либо логическую единицу (когда он заряжен), либо логический ноль (когда он разряжен). Транзистор выполняет роль электрического ключа, который либо удерживает заряд на конденсаторе, либо открывает для считывания.

Регенерация памяти

Конденсатор, который служит хранителем данных, имеет микроскопические размеры и как следствие маленькую ёмкость, и ввиду этого не может долго хранить заряд заданный ему, по причине саморазряда. Для борьбы с этой проблемой, используется регенерация памяти , которая, с определённой периодичностью считывает ячейки и записывает заново. Благодаря подобному явлению, эта память и получила название динамической.

Чтение памяти

Если нам нужно прочитать память, то на определённую строку страницы памяти, подаётся сигнал, который открывает транзистор и пропускает электрический заряд, который содержится (или не содержится) в конденсаторе на соответствующий столбец. К каждому столбцу подключен чувствительный усилитель, который реагирует на незначительный поток электронов выпущенных с конденсатора. Но тут есть нюанс - сигнал, поданный на строку матрицы, открывает все транзисторы данной строки, так как они все подключены на данную строку, и таким образом происходит чтение всей строки. Исходя из вышесказанного, становится ясно, что строка в памяти, является минимальной величиной для чтения - прочитать одну ячейку, не затронув другие невозможно.

Процесс чтения памяти является деструктивным, так как прочитанный конденсатор отдал все свои электроны, что бы его услышал чувствительный усилитель. И по этому, после каждого чтения строки, её нужно записать заново.

Интерфейс памяти

У интерфейсной части памяти следует выделить линии адреса и линии данных. Линии адреса указывают на адрес ячейки, а линии данных производят чтение и запись памяти.

Не забываем оставлять

ОЗУ - это наибольшая часть основной памяти. ОЗУ предназначено для хранения переменной (текущей, быстро изменяющейся) информации и допускает изменение своего содержимого в ходе выполнения процессором вычислений. Это означает, что процессор может выбрать (режим считывания ) из ОЗУ команду или данные и после обработки поместить полученный результат (режим записи ) в ОЗУ. Размещение новых данных возможно на тех же местах, где ранее находились исходные данные. Понятно, что прежние данные будут стерты. ОЗУ позволяет кратковременно (до выключения питания) хранить записанную информацию. Данные, адреса и команды, которыми процессор обменивается с памятью, часто называют операндами .

Выполняемая в данный момент компьютером программа (активная) чаще всего располагается в ОЗУ (и лишь иногда в ПЗУ).

Основной составной частью ОЗУ является массив элементов памяти, объединенных в матрицу накопителя. Элемент памяти (ЭП) может хранить один бит информации (запоминать два состояния 0 или 1).

Каждый ЭП имеет свой адрес (по-другому можно сказать - порядковый номер). Для обращения к ЭП (с целью записи или считывания информации) его необходимо «выбрать» с помощью кода адреса. Оперативная память является электронной памятью, потому что она создается с помощью микросхем - изделий микроэлектроники.

Микросхемы памяти бывают одноразрядные и многоразрядные.

В одноразрядных микросхемах памяти код адреса (иногда говорят просто - адрес) выбирает один элемент памяти из множества элементов, расположенных в матрице накопителя. После выбора элемента в него можно записать информацию или, наоборот, считать из него один бит информации. Специальный управляющий сигнал Зп/сч (Write/Read) указывает микросхеме, что она должна делать: записывать или считывать информацию. Управляющие сигналы на этот вход поступают от процессора. В одноразрядных микросхемах памяти имеются один вход для записи информации и один выход для ее считывания.

Разрядность кода адреса m в одноразрядных микросхемах памяти определяет информационную емкость, т. е. число ЭП в матрице накопителя. Емкость такой микросхемы рассчитывается по формуле 2 m . Например, если у одноразрядной микросхемы памяти имеется 10 адресных входов, то информационная емкость составит N = 2 10 = 1024 бита.

Некоторые микросхемы памяти имеют многоразрядную структуру, называемую также словарной. У таких микросхем памяти имеется несколько информационных входов и столько же выходов. Поэтому они допускают одновременную запись (или считывание) многоразрядного кода, который принято называть словом . Один адрес позволяет считать информацию сразу из нескольких ЭП. Группа элементов памяти, из которых одновременно считывается информация, называется ячейкой памяти. Таким образом, ячейка памяти - это несколько ЭП, имеющих общий адрес.

На английском языке оперативная память называется R andom A ccess M emory (RAM) - память с произвольным доступом. Термин «произвольный доступ » означает, что можно считать (записать) информацию в любой момент времени из любого (в любой) ЭП. Заметим, что существует и другая организация памяти, при которой, прежде чем считать нужную информацию, нужно «вытолкнуть» ранее поступившие операнды.

Используется два основных типа оперативной памяти: статическая (SRAM - Static RAM) и динамическая (DRAM - Dynamic RAM).

Эти две разновидности памяти различаются быстродействием и удельной плотностью (емкостью) хранимой информации. Быстродействие памяти характеризуется двумя параметрами: временем доступа (access time) и длительностью цикла (cycle time). Эти величины, как правило, измеряются в наносекундах. Чем меньше эти величины, тем выше быстродействие памяти.

Время доступа представляет собой промежуток времени между формированием запроса на чтение информации из памяти и моментом поступления из памяти запрошенного машинного слова (операнда).

Длительность цикла определяется минимальным допустимым временем между двумя последовательными обращениями к памяти.

В статической памяти элементы построены на триггерах - схемах с двумя устойчивыми состояниями. Для построения одного триггера требуется 4-6 транзисторов. После записи информации в статический элемент памяти он может хранить информацию сколь угодно долго (пока подается электрическое питание).

Конструктивно микросхема памяти выполняется в виде прямоугольной матрицы , причем ЭП располагаются на пересечении строк и столбцов. При обращении к микросхеме статической памяти на нее подается полный адрес, который разбивается на две части. Одна часть адреса используется для выбора строк матрицы накопителя, а вторая - для выбора столбцов.

На рисунке приведена структурная схема микросхемы памяти К561РУ2, у которой 8 адресных входов: a 7 a 6 , …, a 0 . Это позволяет разместить в матрице 2 8 = 256 элементов памяти. Адресные входы разделены на две равные части (матрица квадратная). Младшая часть адреса a 3 a 2 a 1 a 0 позволяет выбрать одну из шестнадцати строк x 0 , x 1 , x 2 , …, x 15 . При помощи старшей части адреса a 7 a 6 a 5 a 4 происходит выбор одного из шестнадцати столбцов y 0 , y 1 , …, y 15 .

Чтобы выбрать какой-то ЭП, нужно активизировать строку и столбец, на пересечении которых располагается нужный ЭП.

a 7

a 6

a 5

a 4

y 15

y 1

y 0

x 15

x 1

x 0

a 3

a 2

a 1

a 0

Например, чтобы выбрать ЭП 0, нужно на все адресные входы микросхемы подать нули, тогда дешифратор строк DCR (D ec oder R ow) и дешифратор столбцов DCC (D ec oder C olumn) активизируют соответственно строку x 0 и столбец y 0 . На их пересечении располагается ЭП 0, в который, после его выбора, можно записать (или считать) информацию.

Аналогично выбираются другие ЭП. Так, для выбора ЭП 241 нужно активизировать строку x 1 и столбец y 15 . Для этого на младшую группу адресов (a 3 , …, a 0 ) нужно подать двоичный код 0001, а на старшую группу адресов (a 7 , …, a 4 ) - все единицы.

Статическая память имеет высокое быстродействие и низкую удельную плотность размещения хранящихся данных. В динамической памяти ЭП построены на основе полупроводниковых конденсаторов, занимающих гораздо меньшую площадь, чем триггеры в статических ЭП. Для построения динамического элемента памяти требуется всего 1-2 транзистора.

Регенерация заряда должна происходить достаточно часто. Подтверждением этого являются следующие рассуждения. Так как необходимо получить высокую удельную плотность хранения информации, емкость конденсатора не может быть большой (практически величина емкости запоминающих конденсаторов составляет порядка 0,1 пФ). Постоянная времени разряда определяется как произведение емкости конденсатора на сопротивление закрытого транзистора. Это произведение составляет величину порядка

= RC = 10 10 0,110 -12 = 10 -3 c.

Таким образом, постоянная времени разряда составляет одну миллисекунду и, значит, регенерация заряда должна происходить примерно тысяча раз в секунду.

Необходимость частой подзарядки запоминающих конденсаторов в матрице накопителя приводит к снижению быстродействия динамической памяти. Однако, благодаря малым размерам конденсатора и малому числу дополнительных элементов, удельная плотность хранения информации динамической памяти выше, чем у статической памяти.

Емкость микросхем динамической памяти составляет десятки Мбит на один корпус. Возможность размещения на одном кристалле большого числа ЭП вызывает другую конструкторскую проблему: необходимо использовать большое число адресных входов. Для снижения остроты этой проблемы используют мультиплексирование.

Мультиплексирование - это технический прием временного уплотнения информации, благодаря которому удается по одним и тем же электрическим цепям передать разную информацию для различных приемников (потребителей) информации. Так, конструкторы вдвое уменьшают число адресных входов у микросхем памяти. Адрес делят на две равные части и вводят его в микросхему поочередно: сначала младшую часть, а затем старшую часть адреса. При этом первая часть осуществляет выбор нужной строки в матрице накопителя, а вторая часть активизирует соответствующий столбец.

Для того чтобы микросхема памяти «знала», какая часть адреса вводится в данный момент времени, ввод каждой группы адреса сопровождается соответствующим управляющим сигналом.

Так, синхронно с вводом младшей части адреса на микросхему подается сигнал RAS (R ow A ddress S trobe) - сигнал стробирования (сопровождения) адреса строки. Практически одновременно с вводом старшей части адреса на микросхему памяти подается сигнал CAS (C olumn A ddress S trobe) - стробирование адреса столбца.

После завершения выбора какого-либо ЭП требуется время, в течение которого происходит восстановление микросхемы в исходное состояние. Данная задержка связана с необходимостью перезарядки внутренних цепей микросхемы. Длительность этой задержки существенна и составляет до 90% от времени цикла.

Обходят это нежелательное явление различными конструктивными ухищрениями. Например, при записи нескольких следующих друг за другом операндов, их располагают на одной строке матрицы, но в разных столбцах. Экономия времени достигается тем, что не нужно ожидать завершения переходных процессов при смене адреса строк.

Другой способ повышения быстродействия заключается в том, что память разбивают на блоки (банки), из которых процессор считывает данные попеременно. Таким образом, пока считываются данные из одной области памяти, вторая получает время на завершение переходных процессов.

Разработаны различные модификации статической и динамической памяти.

FPM DRAM (F ast P age M ode DRAM) - динамическая память с быстрым страничным доступом . Память со страничным доступом отличается от обычной динамической памяти тем, что после выбора одной строки матрицы удерживается сигнал выбора строки RAS и производится многократное изменение адресов столбцов (с помощью сигнала CAS). В этом случае не тратится время на завершение переходных процессов при изменении адреса строки. Другими словами, адрес строки остается некоторое время постоянным, а изменяются адреса столбцов. В этом случае страницей называют элементы памяти, расположенные на одной строке матрицы.

EDO (E xtended D ata O ut) - эти микросхемы характеризуются увеличенным временем удержания данных на выходе. Фактически представляют собой обычную память FPM DRAM, на выходе которой установлены регистры - защелки данных. Регистры – это цифровые устройства, построенные на триггерах и позволяющие хранить сразу несколько битов информации (слово). При страничном обмене такие микросхемы удерживают на выходах микросхемы содержимое последней выбранной ячейки памяти, в то время как на их входы уже подается адрес следующей выбираемой ячейки памяти. Это позволяет примерно на 15% по сравнению с FРM ускорить процесс считывания последовательно расположенных массивов данных.

SDRAM (S ynchronous DRAM - синхронная динамическая память) - память с синхронным доступом, работающая быстрее обычной асинхронной памяти. Основу этого типа памяти составляет традиционная схема DRAM. Однако SDRAM отличается тем, что использует тактовый генератор для синхронизации всех сигналов, применяемых в микросхеме памяти. Помимо синхронного метода доступа, SDRAM использует внутреннее разделение массива памяти на два независимых банка, что позволяет совмещать по времени выборку из одного банка с установкой адреса в другом банке.

Каждая ячейка оперативной памяти имеет свой индивидуальный адрес.

В современных вычислительных устройствах, по типу исполнения различают два основных вида ОЗУ:

1. ОЗУ, собранное на триггерах, называемое статической памятью с произвольным доступом, или просто статической памятью - SRAM (Static RAM). Достоинство этой памяти - скорость. Поскольку триггеры собраны на вентилях, а время задержки вентиля очень мало, то и переключение состояния триггера происходит очень быстро. Также данная память не лишена недостатоков. Во-первых, группа транзисторов, входящих в состав триггера обходится дороже, даже если они вытравляются миллионами на одной кремниевой подложке. Кроме того, группа транзисторов занимает гораздо больше места, поскольку между транзисторами, которые образуют триггер, должны быть вытравлены линии связи. Эти соображения заставили изобретателей изобрести более экономичную память, как по стоимости, так и по компактности.

2. В более экономичной памяти для хранения разряда (бита) используют схему, состоящую из одного конденсатора и одного транзистора (в некоторых вариациях конденсаторов два). Такой вид памяти решает, во-первых, проблему дороговизны (один конденсатор и один транзистор дешевле нескольких транзисторов), а во-вторых, компактности (на том месте, где в SRAM размещается один триггер, то есть один бит, можно уместить восемь конденсаторов и транзисторов). Однако есть и свои минусы. Во-первых, память на основе конденсаторов работает медленнее, поскольку если в SRAM изменение напряжения на входе триггера сразу же приводит к изменению его состояния, то для того, чтобы установить в единицу бит на основе конденсатора, этот конденсатор нужно зарядить, а для того, чтобы бит установить в 0, соответственно, разрядить. А зарядка или разрядка конденсатора - гораздо более длительная операция, чем переключение триггера (в 10 и более раз), даже если конденсатор имеет весьма небольшие размеры. Есть и второй существенный минус - конденсаторы склонны к "стеканию" заряда, проще говоря, со временем конденсаторы разряжаются. Причем разряжаются они тем быстрее, чем меньше их емкость. В связи с этим обстоятельством, дабы не потерять содержимое битов, эти конденсаторы необходимо регенерировать через определённый интервал времени, чтобы восстанавливать заряд. Регенерация, выполняется путем считывания заряда (считывание заряда с конденсатора выполняется через транзистор). Контроллер памяти периодически приостанавливает все операции с памятью для регенерации ее содержимого. Эта операция - регенерация значительно снижает производительность ОЗУ. Память на конденсаторах получила название - динамическая память - DRAM (Dynamic RAM) за то, что разряды в ней хранятся не статически, а "стекают" динамически во времени.

Таким образом, DRAM значительно дешевле SRAM, ее плотность значительно выше, что позволяет на том же пространстве кремниевой подложки размещать больше битов, но при этом ее быстродействие очень низкое. SRAM, наоборот, является очень быстрой памятью, но зато и очень дорогой. В связи с чем обычную оперативную память строят на модулях DRAM, а SRAM используется при создании, например кэшей микропроцессоров всех уровней.

ОЗУ может изготавливаться как отдельный блок, или входить в конструкцию однокристальной ЭВМ или микроконтроллера .

Пример структуры адресного пространства памяти на примере IBM PC

Основная область памяти

Upper Memory Area

Дополнительная область памяти

High Memory Area

См. также

Ссылки

Литература

  • Скотт Мюллер. Глава 6. Оперативная память // Модернизация и ремонт ПК = Upgrading and Repairing PCs. - 17 изд. - М.: «Вильямс» , 2007. - С. 499-572. - ISBN 0-7897-3404-4

Wikimedia Foundation . 2010 .

Смотреть что такое "Ячейка памяти ЭВМ" в других словарях:

    Совокупность запоминающих элементов или участок запоминающей среды, предназнач. для хранения одного машинного слова (числа), имеющие индивидуальный адрес или канал для обращения. Обычно Я. п. составная часть накопит, блока запоминающего… … Большой энциклопедический политехнический словарь

    Совокупность элементов запоминающего устройства ЭВМ для хранения 1 машинного слова (числа) или его части (напр., 1 байта). Общее число ячеек памяти всех запоминающих устройств определяет емкость памяти ЭВМ … Большой Энциклопедический словарь

    Совокупность элементов запоминающего устройства ЭВМ для хранения 1 машинного слова (числа) или его части (например, 1 байта). Общее число ячеек памяти всех запоминающих устройств определяет ёмкость памяти ЭВМ. * * * ЯЧЕЙКА ПАМЯТИ ЯЧЕЙКА ПАМЯТИ,… … Энциклопедический словарь

    ЭВМ, совокупность запоминающих элементов или участок запоминающей среды (напр., участок поверхности магнитной ленты, магнитного или оптического диска), предназначенные для хранения одного машинного слова или его части. Ячейка памяти –… … Энциклопедия техники

    Совокупность элементов запоминающего устройства ЭВМ для хранения 1 машинного слова (числа) или его части (напр., 1 байта). Общее число Я. п. всех запоминающих устройств определяет ёмкость памяти ЭВМ … Естествознание. Энциклопедический словарь

    Минимальный адресуемый элемент запоминающего устройства ЭВМ. Основные сведения Ячейки памяти могут иметь разную ёмкость (число разрядов, длину). Современные запоминающие устройства обычно имеют размер ячейки памяти равным одной из степеней двойки … Википедия

    Возможно, эта статья содержит оригинальное исследование. Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление. Дополнительные сведения могут быть на странице обсуждения. (11 мая 2011) … Википедия

    Троичный триггер электронное, механическое, пневматическое, гидравлическое или другое устройство, имеющее три устойчивых состояния, возможность переключения из любого одного из трёх устойчивых состояний в любое из двух других устойчивых состояний … Википедия

    Ячейка: Ячейка сота Ячейка отсек Ячейка ящик Ячейка бокс, релейный шкаф Депозитарная ячейка сейф в банке, сдаваемый клиентам внаем Ячейка Бенара понятие в физике Ячейка памяти в информатике это часть… … Википедия

    Ячейка (Значения): Ячейка сота Ячейка отсек Ячейка ящик Ячейка бокс, релейный шкаф Депозитарная ячейка сейф в банке, сдаваемый клиентам внаем Ячейка Бенара упорядоченные структуры в жидкости, классический пример самоорганизации в физике Ячейка… … Википедия

 
Статьи по теме:
Multisim 17 где находится библиотека элементов
Компоненты и библиотеки элементов Multisim 11 Контрольно-измерительные и индикаторные приборы В Multisim имеются измерительные приборы, каждый из которых можно использовать в схеме только один раз. Эти приборы рас­положены в библиотеке контрольно-из
Универсальная последовательная шина USB В чем преимущества шины usb
Универсальная последовательная шина Mini-B Connector ECN : извещение выпущено в октябре 2000 года. Errata, начиная с декабря 2000 : извещение выпущено в декабре 2000 года. Pull-up/Pull-down Resistors ECN Errata, начиная с мая 2002 : извещение выпущено в
Календарь: как использовать онлайн-сервис для планирования личного времени
Данное средство Outlook поможет вам спланировать наилучшим образом свои дела (встречи, собрания, события) в течение дня, недели или месяца. С помощью календаря Outlook можно планировать следующее. Встреча . Для этого требуется выделить время в деловом рас
HDD vs SSD в играх: сравнение времени загрузки и производительности
Привет всем Я постараюсь простыми словами рассказать вам что лучше использовать для игр: жесткий диск или SSD. Но это все мои личные мысли я не претендую на истину, ну это так… Я немного разбираюсь в SSD и в HDD, вообще люблю железо.. Все мы знаем что SS